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Abstract

With increased computational power and progress in numerical methods over the
past several decades, Computational Fluid Dynamics (CFD) is now used routinely
as a powerful tool in the design of aircraft. Current production CFD codes used in
the aerospace industry are usually second order accurate. High-order methods have
the potential to achieve higher accuracy at less cost than low-order methods. This
potential has been demonstrated conclusively for smooth problems in the latest In-
ternational Workshops on High-Order Methods. For non-smooth problems, solution
based hp-adaptation offers the best promise. Adjoint-based adaptive methods have
the capability to dynamically distribute computing resources to areas most impor-
tant for predicting engineering parameters, such as lift and drag coefficients. The
primary objective of the present study is to develop robust and efficient high-order
CFD methods and tools for the compressible Navier-Stokes equations that can pro-
vide engineering accuracy for real world industry problems. This report outlines
progresses in the following areas.

The flux reconstruction (FR) or the correction procedure via reconstruction
(CPR) method used in this work is a high-order differential formulation. We develop
a parallel adjoint-based adaptive CPR solver which can work with any element-based
error estimate and handle arbitrary discretization order for mixed elements. First,
a dual-consistent discrete form of the CPR method is derived. Then, an efficient
and accurate adjoint-based error estimation for the CPR method is developed and
its accuracy and effectiveness are verified for the linear and non-linear partial dif-
ferential equations (PDE). The current method has been applied to aerodynamic
problems. Numerical tests show that significant savings in the number of DOFs can
be achieved through the adjoint-based adaptation.

The usage of large-eddy simulation (LES) methods for the computation of tur-
bulent flows has increased substantially in recent years. By resolving large energetic
scales, LES has the potential to exhibit good performance especially for vortex
dominated or massively separated flows. Due to the disparate length scales in LES,
high-order methods are preferred for their high accuracy. Recently, models of the
sub-grid scale (SGS) stress with the high-order FR/CPR method have been eval-
uated on 3D turbulent flows and the 1D Burgers’ equation. Preliminary studies
show that implicit LES (ILES), which does not involve any SGS model, has the
most efficient and accurate results. In addition, a mathematical analysis of the scale
similarity is performed, revealing that the ratio of the resolved stress to the SGS
stress is γ2, where γ is the ratio of the second filter width to the first filter width,
under the assumption of small filter width.

For high-order methods to be effective, they must be paired with high-order
meshes that include high-order representations of curved boundaries. A user-friendly,
GUI-based software named meshCurve is developed to convert linear unstructured
meshes to curved high-order meshes . Using the state-of-the-art algorithms, the soft-
ware reconstructs the curved geometry from the linear surface mesh, while retaining
sharp feature curves . The upgrade process is automatic and does not require a CAD
file. meshCurve may be used by CFD practitioners and researchers to easily produce
quality high-order meshes from existing low-order meshes. The CGNS standard is
used as the file format for input and output.
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1 Introduction

1.1 Background
With continuous progresses in numerical methods and computer hardware over the past
several decades, Computational Fluid Dynamics (CFD) is now used routinely as a pow-
erful tool in the design of aircraft. Current production CFD codes used in the aerospace
industry are usually second order accurate. High-order methods have the potential to
achieve greater accuracy at less cost. This potential has been demonstrated conclusively
for smooth problems in the recent several International Workshops on High-Order Meth-
ods [107]. A variety of high order methods have been developed. Refer to several books
[49, 63, 106] and reviews [29, 105] for the state-of-the-art and recent progresses in the
development of such methods. The primary objective of the present study is to develop
robust and efficient high-order CFD software for compressible Navier-Stokes equations
that can provide engineering accuracy for real world industry problems.

The numerical method we consider is a nodal differential high-order formulation named
the correction procedure via reconstruction (CPR) method [54][108]. This formulation has
some remarkable properties. The framework is easy to understand, efficient to implement
and can recover several well known methods such as the discontinuous Galerkin (DG)
[85, 8, 9, 23, 24, 83, 111], the spectral volume method (SV) [104, 110, 72] and the spectral
difference methods (SD)[71, 64, 78, 97, 70]. For recent development with CPR, interested
readers can refer to [55, 109, 58, 17, 35, 36, 18, 56, 118].

For non-smooth problems, solution based hp-adaptations offer the best promise. Adap-
tive methods have the capability to dynamically distribute computing resources to de-
sired areas of the computational domain, achieving required accuracy at minimal cost
[74, 20, 27, 53]. Because they can ensure reliability and increase the robustness of high-
order methods, adaptive methods have received considerable attention in the high-order
CFD community [48, 98, 99, 31, 102, 116, 30].

The effectiveness of adaptive methods highly depends on the accuracy of the error
estimation. There are at least three major types of adaptation criteria: gradient or
feature based Berger and Colella [15], Warren et al. [112], Barth [7], Harris and Wang
[46], residual-based Ainsworth and Oden [1], Baker [5], Johnson [61], Shih and Qin [93],
Gao and Wang [34], Cagnone and Nadarajah [17], and adjoint-based Giles and Pierce
[41], Venditti and Darmofal [99], Hartmann and Houston [48], Venditti and Darmofal
[98], Becker and Rannacher [13], Giles and Pierce [42], Park [82], Venditti and Darmofal
[100], Fidkowski and Darmofal [31], Wang and Mavriplis [101], Leicht and Hartmann [65],
Li et al. [67], Yano and Darmofal [117], Ceze and Fidkowski [21]. Heuristic feature-based
criteria perform refinements around some unique flow features, such as large gradients or
strong vorticity, but because they do not directly relate to the output variables of interest,
they cannot provide universal and robust error estimation Zhang et al. [119], Venditti and
Darmofal [98]. The residual-based error criteria targets the elements which have large
discretization error, flagging them for refinement. The locally defined element-wise error
may lead to false refinements in convection-dominated problems. The dual-weighted
residual method proposed by Becker and Rannacher [12] relates a specific functional
output directly to the local residual by solving an additional adjoint equation. It can
capture the error propagation effects inherent in the hyperbolic equations. This kind of
adjoint-based error indicator has been shown very effective in driving an hp-adaptation
procedure to obtain a very accurate prediction of the functional outputs [41, 42, 13, 16,
117, 21, 102]. Recently, Fidkowski and P.L Roe developed a new error indicator based
on the entropy variables, which can be interpreted as the dual solution of the output
of entropy balance on the whole domain. It can be obtained directly from the state
variables without solving extra adjoint equations and has been successfully applied to
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inviscid, viscous and turbulence flows Fidkowski and Roe [32, 33].
The adjoint solution is required for the error estimate and output-based adaptation.

There are two approaches to obtain the adjoint: the continuous adjoint and the discrete
adjoint. It has been shown that the discrete adjoint solution leads to a more accurate error
estimation for the fine grid functional, while the continuous adjoint gives a better output
estimation when the primal and adjoint solutions are well resolved [68]. However, the
discrete adjoint solution should be consistent with the exact adjoint from the continuous
adjoint equation. It is well known that dual consistency can significantly impact the con-
vergence rate of both the primal and adjoint approximations. There are several possible
sources of dual inconsistency in a high-order discretization. A dual-consistent discretiza-
tion with variational forms, such as the finite element and DG methods, were examined
for the Euler and Navier-Stokes equations in the literature [41, 42, 47, 62, 90]. More
recently, adjoint-based error estimation for summation-by-parts finite-difference methods
have been studied [50, 51, 14]. However, the analysis of the dual consistency for compact
high-order differential-type methods appears lacking. This is one of the focuses of the
present study.

The high-order CPR method can handle arbitrary solution order on mixed grids. The
marked candidate elements for adaptation can be modified by enriching its solution order
or subdividing its element or resizing its grid. Thus, the ways to increase the discretization
resolution can be generally classified into 3 categories: h-refinement, r-refinement and p-
refinement. For h-refinement, subdivision is performed locally for each candidate element
to increase the total DOFs. R-refinement or the moving mesh method keeps the total
number of nodes the same but moves the location of the grid locally or globally [53]. With
p-refinement, the local degree of approximation polynomial is modified. The moving mesh
method with curved elements in 3D is still an on-going research area. In this work, we
only modify the solution polynomial order locally or subdivide elements hierarchically
for adaptations. Intuitively, h-refinement should be applied to the discontinuities and
p-enrichment is appropriate in smooth flow regions. However, the optimal choice between
h- or p-refinement is not a trivial problem, which is studied in the previous research
[16, 52, 96, 37, 11, 21, 25, 63, 102].

Reynolds-averaged Navier-Stokes (RANS) methods have been used almost exclusively
for the computational fluid dynamics (CFD) analysis of practical engineering turbulent
flows for the past several decades. In RANS, all turbulent fluid dynamic effects are re-
placed by a turbulence model. RANS-based techniques are successfully used in the indus-
try for many cases. However, the behavior in the vortex dominated or massively separated
flows are far from being satisfactory. On the other end, direct numerical simulation (DNS)
methods resolve all turbulent motions. Without the influence of the turbulence modeling,
it gives the whole spectrum of the turbulent flow. But DNS will still remain impractical
for its high cost of computational power. Large-eddy simulation (LES) is a compromise
of these two ends. In LES, large energetic scale motions are resolved while the small
scale motions are taken care of by the SGS models. With the resolving of the important
scales, the solution given by LES is expected to be more accurate than RANS, but, still
affordable by the computation power today.

In LES, the large scales and small scales are separated by a low-pass filter. While
the large scales are fully resolved, the small scales are believed to be more universal, and
thus easier to model than the large-scale ones. Many SGS models have been developed in
the last four decades. We focuses on five of them: the static Smagorinsky model (SS)J.
[57] DK [26], the dynamic Smagorinsky model (DS)Germano M and WH [38], the scale-
similarity model (SSM)Bardina J [6], the mixed model (MM) Bardina J [6] and the linear
unified RANS-LES model (LUM) Harish Gopalan [45]. Among explicit models, the SS is
a popular one because of its simplicity. The effect of the SGS stress upon the resolved
scales is modeled as an eddy viscosity. The eddy viscosity is expressed in the mixing
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length form with a dimensionless empirical coefficient. However, it has been found that
the empirical coefficient depends on the flow. It also adds too much dissipation to the
large scale motions if we keep the coefficient the same as we approach wall boundaries.
To resolve these deficiencies, the DS model was developed in Germano M and WH [38].
In the DS model, the coefficient is calculated based on the Germano identity, which
involves two levels of filtering and relates the SGS stress to the resolved stress. The
coefficient is locally decided and no longer a prescribed constant, and it goes to zero as a
wall boundary is approached. The DS model has been applied to a large variety of flow
simulations Piomelli U [84]Ghosal S [40]Akselvoll K [3]Wu X [113]. An alternative way
to model the SGS stress is offered by the SSM Bardina J [6]. As the name indicates,
it assumes similarity between two scales of stresses, the resolved stress and the SGS
stress. Numerical tests showed that energy accumulated at small scales with this model
Meneveau C [80]. To remedy the problem, the DS was added to dissipate the energy,
which led to the MM. Recently, hybrid RANS-LES models have drawn much research
interest. They combine RANS with LES so that in the near wall region, the RANS model
is used, while LES is employed in the outer region. These models have demonstrated good
accuracy with reasonable cost when compared to a pure LES approach. The linear unified
RANS-LES model (LUM) was developed in Harish Gopalan [45]. In the present work,
we also evaluate the LUM model. Finally, we also consider the monotone integrated LES
Durbin P. A [28] or implicit LES (ILES) Grinstein F. F. [44], in which no explicit SGS
model is used. In ILES, the numerical algorithm has its numerical dissipation which serves
as the SGS. The obvious advantage of ILES is its lower computational cost compared with
the conventional SGS models.

As high-order methods become increasingly mature for real world applications, high-
order boundary treatment becomes a critical issue. In mainstream finite volume solvers,
the wall boundary of the geometry is usually represented by piecewise straight segments
or planar facets. However, this linear boundary representation is far from sufficient for
high-order methods. When the error from the geometry dominate the discretization error,
the benefit of high-order methods is largely lost. For high-order methods to be effective,
they must be paired with high-order meshes that include high-order representations of
curved boundaries [77, 115].

Unfortunately, algorithms for generating high-order meshes are in short supply, and
software support is limited. The lack of adequate high-order mesh generators has prompted
researchers at the 1st International Workshop of High-Order CFD to prioritize high-order
meshing as a pacing item for future research [103]. A second, related issue, is the need
for high-order versions of existing low-order meshes. In many cases, the existing meshes
no longer have their original CAD geometry file, so it is impossible to generate high-
order meshes even if software to do so is available. To address these issues, the general-
purpose low-to-high-order mesh converter meshCurve was created. The software is a
cross-platform, GUI-based tool to easily and efficiently perform low-to-high-order mesh
conversion. Access to the CAD geometry is unnecessary because the software uses the
mesh itself to infer the surface curvature, while automatically identifing and preserving
feature curves. Since high-order meshing is an issue for multiple simulation disciplines,
we anticipate that meshCurve may also be useful in disciplines beyond CFD.

1.2 Program Objectives
The objective of this work is to develop a robust, accurate and efficient high-order CFD
tool for real world engineering problems. In particular, the specific aims of this research
are identified as follows:

• Develop a dual-consistent discrete adjoint equation for the CPR method.
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• Develop an efficient and accurate automated adjoint-based error estimation method
for the CPR formulation.

• Implement an adjoint-based adaptive solver with the CPR method, which can han-
dle arbitrary discretization orders, and compare the different adaptation strategies.

• Demonstrate the importance of hp-adaptation for the high-order CPR method to
aerodynamic flows and engineering problems.

• Evaluate SGS models with 3D turbulent flows using FR/CPR method.

• A priori and a posteriori evaluation of SGS models with Burgers’ Equation and
Euler Equations using FR/CPR method.

• Demonstrate the accuracy and efficiency of LES with the high-order CPR method
to aerodynamic flows and apply it to a wide range of engineering applications.

• Develop a GUI-based, user-friendly, linear to high-order mesh converter.
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2 Results and Discussion on Adjoint-based Adaptive
High-order Differential Formulation

2.1 Review of the Correction Procedure via Reconstruction Method
The CPR method [54, 108] can be derived by transforming a weighted residual form into
a differential one. Consider a hyperbolic conservation law

∂Q

∂t
+∇ · ~F (Q) = 0, (1)

with proper initial and boundary conditions, where Q is the state vector, and ~F = (F,G)
is the flux vector. Assume that the computational domain Ω is discretized into N non-
overlapping triangular elements {Vi}Ni=1. LetW be an arbitrary weighting or test function.
The weighted residual formulation of Eq.1 on element Vi can be expressed as

ˆ
Vi

(
∂Q

∂t
+∇ · ~F (Q)

)
WdΩ = 0. (2)

Let Qi be an approximate solution to the analytical solution Q on Vi. On each element,
the solution belongs to the space of polynomials of degree k or less, i.e., Qi ∈ P k(Vi).
After applying integration by parts twice to the flux divergence and replacing the normal
flux term with a common Riemann flux Fncom in the above equation, we get

ˆ
Vi

∂Qi
∂t

WdΩ +

ˆ
Vi

W∇ · ~F (Qi)dΩ +

ˆ
∂Vi

W [Fncom − Fn(Qi)] dS = 0. (3)

Here the common Riemann flux Fncom is defined as

Fncom = Fncom(Qi, Qi+, ~n), (4)

where Qi+ denotes the solution outside the current element Vi, and the normal flux
Fn(Qi) at the interface is

Fn(Qi) = ~F (Qi) · ~n.

In order to eliminate the test function, the boundary integral above is cast as a volume
integral via the introduction of a “correction field” on Vi, δi ∈ P k(Vi),

ˆ
Vi

WδidΩ =

ˆ
∂Vi

W [Fn]dS, (5)

where [Fn] = Fncom − Fn(Qi) is the normal flux difference. Substituting Eq.5 into Eq.3,
we obtain

ˆ
Vi

(
∂Qi
∂t

+∇ · ~F (Qi) + δi

)
WdΩ = 0. (6)

If the flux vector is a linear function of the state variable, then ∇ · ~F (Qi) ∈ P k. In
this case, the terms inside the square bracket are all elements of P k. Because the test
space is selected to ensure a unique solution, Eq.6 is equivalent to

∂Qi
∂t

+∇ · ~F (Qi) + δi = 0. (7)

For nonlinear conservation laws, ∇ · ~F (Qi) is usually not an element of P k. As a
result, Eq.6 cannot be reduced to Eq.7. In this case, the most obviously choice is to

9DISTRIBUTION A: Distribution approved for public release



project ∇ · ~F (Qi) into P k. Denote Π
(
∇ · ~F (Qi)

)
as a projection of ∇ · ~F (Qi) to P k. One

choice is
ˆ
Vi

Π
(
∇ · ~F (Qi)

)
WdΩ =

ˆ
Vi

∇ · ~F (Qi)WdΩ. (8)

Then Eq.6 reduces to

∂Qi
∂t

+ Π
(
∇ · ~F (Qi)

)
+ δi = 0. (9)

Next, let the DOFs be the solutions at a set of solution points (SPs) {~ri,j} (j varies
from 1 to K = (k + 1)(k + 2)/2). Then Eq.9 is true at the SPs, i.e.,

∂Qi,j
∂t

+ Πj

(
∇ · ~F (Qi)

)
+ δi,j = 0, (10)

where Πj

(
∇ · ~F (Qi)

)
denotes the values of Π

(
∇ · ~F (Qi)

)
at SP j. The efficiency of the

CPR approach hinges on how the correction field δi and the projection Π
(
∇ · ~F (Qi)

)
are computed. Two approaches, the Lagrange polynomial (LP) and the chain-rule (CR)
formulations, were suggested to compute the projection of the flux divergence [108]. For
the LP approach, the flux is assumed to belong to the polynomial space of degree k, e.g.
F, G ∈ P k. Therefore, the projection of the flux divergence is expressed as

Π
(
∇ · ~F

)
= ∇ · (

∑
j

Lj ~Fj),

where Lj is the Lagrange interpolation polynomial defined on SP j. For the CR approach,
the flux divergence ∇ · ~F is assumed to belong to the polynomial space P k, which can be
expressed as

Π
(
∇ · ~F

)
=
∑
j

Lj(
∂ ~F

∂Q
· ∇Q)j .

Note that, for a linear conservation law, the LP and CR approaches lead to the same
formulation. However, for a nonlinear flux equation, the CR approach can reduce the
aliasing errors [108].

To compute δi, we define k + 1 points named flux points (FPs) along each interface,
where the normal flux differences are computed. We approximate (for nonlinear conserva-
tion laws) the normal flux difference [Fn] with a degree k interpolation polynomial along
each interface,

[Fn]f ≈ Ik[Fn]f ≡
∑
l

[Fn]f,lL
FP
l , (11)

where f is a face (or edge in 2D) index, and l is the FP index, and LFPl is the Lagrange
interpolation polynomial based on the FPs in a local interface coordinate. For linear
triangles with straight edges, once the solution points and flux points are chosen, the
correction at the SPs can be written as

δi,j =
1

|Vi|
∑
f∈∂Vi

∑
l

αj,f,l[F
n]f,lSf , (12)

where αj,f,l are lifting constants independent of the solution variables, Sf is the face area,
|Vi| is the volume of Vi. The details of how to compute the lifting constantsαj,f,l can be
found in Ref. [108].
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In 1D, a continuous flux polynomial F̂ which is equal to the common flux at the inter-
faces can be reconstructed using a piece-wise analytic flux polynomial Fi(x) = Π(F (Qi))
and a correction term σi(x) as

F̂i(x) = Fi(x) + σi(x).

According to Ref.[54], σi(x) should approximate the zero function and satisfy the following
equation

σi(x) = [F comi−1/2 − Fi(xi−1/2)]gL(x) + [F comi+1/2 − Fi(xi+1/2)]gR(x).

Here, gL(x) and gR(x) are both degree k+ 1 polynomials called correction functions with
the properties

gL(xi−1/2) = 1, gL(xi+1/2) = 0, gR(xi−1/2) = 0, gR(xi+1/2) = 1.

Then the CPR method for the 1D conservation law can be expressed as

∂Qi,j
∂t

+
∂Fi(x)

∂x
+ [F comi−1/2 − Fi(xi−1/2)]g′L(xi,j) + [F comi+1/2 − Fi(xi+1/2)]g′R(xi,j) = 0.

A series of correction functions with different accuracy and stability properties were
developed in Ref. [54]. If the correction function g is chosen as right Radau polynomials,
the DG method is recovered from the CPR scheme. In this case, the correction function
denoted by gDG or g1 is perpendicular to the degree k-1 polynomial space. Similarly, a g2

correction function is defined, which is perpendicular to the degree k-2 polynomial space.
In summary, for any integer m > 1, a gm correction function can be defined which is
perpendicular to P k−m. For the sake of simplicity, the projection operator Π is omitted
in the rest of the paper.

2.2 The Dual-Consistent CPR Formulation
Aircraft design engineers are usually interested in scalar engineering outputs such as lift
or drag coefficients generated from CFD simulations. An adjoint solution can directly
relate the local residual to the engineering output. Adjoint has been used in a wide
range of applications including optimal controls, design optimization, data assimilation
and error estimation. There are two approaches to obtain an adjoint solution. One
can solve the continuous adjoint equation which is a partial differential equation using
any numerical method, or directly solve the discrete adjoint equation derived from the
discretized primal equation. As for the primal problem, a numerical scheme is defined as
a consistent method if its discrete operator converges to the continuous operator, or the
exact solution satisfies the discrete numerical formulation as the mesh size approaches
zero. Similarly, for a dual-consistent adjoint formulation, the exact adjoint solution from
the continuous adjoint equation should satisfy the discrete adjoint equation in the limit of
vanishing mesh size. The dual-consistency of a discrete adjoint operator from a numerical
discretization is a key component to ensure that the optimal convergent rate is achieved
for an engineering output. To establish a robust and accurate functional error estimation
procedure for the CPR method, a dual-consistent CPR formulation is developed in this
section.

2.2.1 The Dual Problem and Adjoint-based Error Estimation

Linear PDEs First, we review the dual problem in the theory of output-based error
estimation. A detailed discussion can be found in a series of articles [41, 42] and references
therein. Consider a linear differential equation

11DISTRIBUTION A: Distribution approved for public release



LQ = f onΩ,

with a homogeneous boundary condition, where Q ∈ V is the solution, V is the infinite
dimensional solution space and f ∈ L2(Ω). Suppose the output functional of interest J
is given as an inner product of a smooth function g and the solution Q

J (Q) = (g,Q) ≡
ˆ

Ω

gQdV,

over the entire domain Ω. The dual problem is introduced by adding a weighted residual
to the functional

J (Q) = (g,Q) + (ψ, f − LQ).

where ψ is an arbitrary function for now. If the solution Q satisfies the linear differential
equation, this weighted residual does not affect the value of the original functional. Denote
L∗ the adjoint differential operator with respect to L defined according to (ψ,LQ) =
(L∗ψ,Q) with homogeneous boundary conditions. Then we have

J (Q) = (g,Q)+(ψ, f)−(ψ,LQ) = (g,Q)+(ψ, f)−(L∗ψ,Q) = (ψ, f)−(L∗ψ−g,Q). (13)

Let ψ be the adjoint solution computed using

L∗ψ = g onΩ.

Then the last term in Eq. 13 vanishes, and we obtain

J (Q) = (ψ, f).

Obviously J is independent of Q, but depends on ψ now. So we call J a function of ψ,
i.e.,

J (ψ) = (ψ, f)− (L∗ψ − g,Q). (14)

Therefore, the duality of the functional is

J (Q) = (g,Q) if LQ = f onΩ

or

J (ψ) = (ψ, f) if L∗ψ = g onΩ.

Suppose Qh and ψh are the discrete primal solution and the discrete adjoint solution
obtained with a numerical method, and both of them belong to the discrete solution space
Vh. Then, the discrete source term for the primal equation is fh = LQh. The functional
error can be estimated by

δJ = (g,Qh)− (g,Q) = (g,Qh −Q)

= (L∗ψ,Qh −Q)

= (ψ,L(Qh −Q))

= (ψh, fh − f)︸ ︷︷ ︸
computable error

+ (ψ − ψh, fh − f)︸ ︷︷ ︸
remaining error

, (15)
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where the linearity of the inner product and the adjoint definition are used. Note that
the first term on the RHS of Eq. 15 is defined as the computable error, since it does
not involve any analytical primal solution. If a numerical method possesses the Galerkin
orthogonality property,

(vh, fh − f) = 0, for all vh ∈ Vh,

the computable error vanishes since we take ψh in space Vh. Therefore, there is no need
to evaluate the computable error, and the order of the output error only depends on the
remaining error term. If we use a degree k polynomial to approximate the primal and
adjoint solution and assume the optimal order of accuracy can be achieved, we obtain

‖Qh −Q‖ = O(hk+1), ‖ψh − ψ‖ = O(hk+1).

Here‖.‖ is a L2 norm. In addition, for a nth order differential PDE, we have ‖fh − f‖ =
O(hk+1−n). So the order of the computable error is O(h2k+2−n), which leads to a su-
perconvergent functional of order O(h2k+2−n). To estimate the output error, we need to
evaluate the computable error. A common approach is to use an adjoint solution from a
finer approximation space, e.g. p = k + 1. Then the computable error is not equal to 0,
and we can use this error estimate to correct the original output

Jcorr ≡ J (Qh) + (ψh, fh − f).

The convergence rate of this corrected output is two orders higher than the original
output, which is O(h2k+4−n). A rigorous proof can be found in Ref. [52].

Nonlinear PDEs Consider a non-linear differential equation

N (Q) = 0, onΩ. (16)

Suppose an output functional of interest is given as J (Q). A dual problem is introduced
by defining a Lagrangian of the output with the constraint of the solution Q satisfying
the primal equation N (Q) = 0

L = J (Q) +

ˆ
Ω

ψN (Q)dΩ. (17)

Here ψ ∈ V has two roles. First, ψ is the adjoint solution. Second, it also serves as a
Lagrangian multiplier. After performing the linearization and enforcing stationary of L
to a solution perturbation δQ ∈ V , we obtain

δL = L′[Q](δQ) = J ′[Q](δQ) +

ˆ
Ω

ψN ′[Q](δQ)dΩ = 0 ∀δQ ∈ V, (18)

where the primed notation denotes Frechét linearization with respect to an argument in
the square bracket. Eq. 18 defines the dual problem in a variational form by finding ψ
such that

J ′[Q](v) +

ˆ
Ω

ψN ′[Q](v)dΩ = 0 ∀v ∈ V. (19)

Let Qh denotes an approximate solution to the analytical solution Q. The difference
between them can be interpreted as a solution perturbation Qh = Q + δQ. The output
error defined as δJ = J (Qh)− J (Q) can be estimated by the adjoint weighted residual
method
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δJ ≈ J ′[Q](δQ) = −
ˆ

Ω

ψN ′[Q](δQ)dΩ ≈ −
ˆ

Ω

ψ(N (Qh)−N (Q))dΩ = −
ˆ

Ω

ψN (Qh)dΩ.

(20)

2.2.2 The Continuous Adjoint Equation

We consider the following conservation law

N (Q) ≡ ∇ · ~F(Q), (21)

as an example to develop the continuous adjoint equation. Eq. 19 leads to

J ′[Q](v) +

ˆ
Ω

ψ

(
∂

∂Q

(
∇ · ~F

))
(v)dΩ = 0 ∀v ∈ V. (22)

Suppose the output functional J (Q) consists of surface (∂Ω) and volume (Ω) integrals

J (Q) =

ˆ
Ω

gQdΩ +

ˆ
∂Ω

jτ (Q)ds,

where jτ is a boundary operator. Substituting the definition of J into Eq. 22, and
performing integration by parts, we get

ˆ
Ω

(g −∇ψ · ∂
~F

∂Q
)dΩ +

ˆ
∂Ω

(
∂jτ
∂Q

+ ψ
∂ ~F
∂Q
· ~n)ds = 0.

∇ψ · ∂
~F

∂Q
= g, (23)

which is a linear partial differential equation for ψ, and the corresponding boundary
conditions are from the surface integral

ˆ
∂Ω

(
∂jτ
∂Q

+ ψ
∂ ~F
∂Q
· ~n)ds = 0. (24)

2.2.3 The Dual-Consistent CPR Formulation

The discrete adjoint equation is obtained directly by linearizing the discretized primal
equation. Consider a discretized formulation of the primal Eq. 16

Nh(Qh) = 0, Qh ∈ Vh
with mesh h, and a discrete solution perturbation δQh ∈ Vh. Linearizing the discrete
residual Rh and the discrete output Jh, we get

δRh = Rh(Qh + δQh)−Rh(Qh) ≈ ∂Rh
∂Qh

δQh

δJh = Jh(Qh + δQh)− Jh(Qh) ≈ ∂Jh
∂Qh

δQh.

The discrete adjoint ψ̃h is defined as the sensitivity of output perturbation δJh to the
primal residual perturbation δRh

δJh ≡ −ψ̃Th δRh,

14DISTRIBUTION A: Distribution approved for public release



(a) The discrete adjoint (b) The discrete adjoint in variational
forms

Figure 1: The CL adjoint for a subsonic NACA0012 airfoil

which leads to

∂Jh
∂Qh

δQh ≈ δJh = −ψ̃Th δRh ≈ −ψ̃Th
∂Rh
∂Qh

δQh.

We obtain the discrete adjoint equation by canceling the solution perturbation δQh

−∂Rh
∂Qh

T

ψ̃h =
∂Jh
∂Qh

T

. (25)

For numerical methods with a weak form such as FEM or DG methods, after choosing
a proper basis, Eq. 25 is equivalent to its variational formulation. A detailed derivations
can be found in Ref. [47, 30]. So the discrete adjoint equation for numerical methods in
semi-linear form is consistent with the continuous adjoint equation. However, this is not
true for numerical methods in a differential form such as the CPR method, which does
not possess a variational form.

Substituting a pointwise residual ri,j defined on each solution point j of cell i arising
from a differential scheme, we obtain

−
∑
i

∑
j

∂ri,j
∂Ql

ψ̃i,j =
∂J
∂Ql

, (26)

where l is the global index of the DOFs in the entire domain. Figure 1a shows the x-
momentum component of the lift adjoint for a subsonic airfoil using the discrete adjoint
equation with the CPR method. It has a very oscillatory distribution in each cell, which
indicates dual-consistency violations.

Since the CPR method is not in a variational form, its discrete adjoint equation
should be directly derived from the linearized Lagrangian. Assume the adjoint solution
belongs to the same space of the primal solution, the adjoint variable ψi of cell i can be
approximated using the Lagrange basis Lj

ψi =
∑
j

Ljψ̂i,j .

Directly discretizing the linearized Lagrangian, Eq. 19, with a quadrature rule, we obtain

−
∑
i

∑
j

∂ri,j
∂Ql

ωj |Ji,j |ψ̂i,j =
∂J
∂Ql

, (27)
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where ωj and |Ji,j | are the quadrature weight and the element Jacobian at the solution
point. Comparing with Eq. 26, the following relation can be derived from the discrete
adjoint ψ̃i,j and the discrete adjoint ψ̂i,j in the integral form

ψ̃i,j = ωj |Ji,j |ψ̂i,j .

It is obvious that the discrete adjoint formula for a numerical scheme in a differential form
is not consistent with the continuous adjoint equation. The inconsistent adjoint is related
to the consistent counterpart in terms of the quadrature weight ω and the cell Jacobian
|J |. This integral equation can be interpreted as an explicitly defined variational form for
the CPR method. In this paper, we call it the dual consistent discrete adjoint formula.
Figure 1b shows the consistent discrete adjoint solution with the CPR method. Clearly
the consistent adjoint solution is smooth.

2.2.4 Analysis of Dual-Consistency for the CPR Method

For a dual consistent discretization, the discrete adjoint equation should approach the
continuous adjoint partial differential equation when the mesh size diminishes. In other
words, the analytic primal solution Q and the analytic dual solution ψ should satisfy
the discrete adjoint equation when the mesh size goes to zero. Substituting the discrete
residual of the CPR method into the discrete adjoint equation for the conservation law
leads to ∑

i

∑
j

∂

∂Ql

(
∇ · ~F (Q)i,j + δi,j

)
ωj |Ji,j |ψ̂i,j = − ∂J

∂Ql
, (28)

where δi,j is the correction term. For a 1D CPR formulation, the above equation can be
further expressed as

∑
i

∑
j

(∑
k

∂F i,k
∂Ql

dLk(ξj)

dξ
+

∂

∂Ql
[F ]i− 1

2
g′L(ξj) +

∂

∂Ql
[F ]i+ 1

2
g′R(ξj)

)
ωjξx,i,jψ̂i,j = − ∂J

∂Ql
.

(29)
Here, g′L, g

′
R and ψi belong to P k(Ωi). dL

dξ is a degree k − 1 polynomial. Therefore, the
degree of the integrand is at least 2k. Assume that the quadrature rule defined on the
solution points is exact at least for a degree 2k polynomial. Then we have

∑
i

ˆ
Ωi

ψi
∑
k

∂Fi,k
∂Ql

dLk
dξ

ξxdx+
∑
i

ˆ
Ωi

ψi

(
∂

∂Ql
[F ]i− 1

2
g′L +

∂

∂Ql
[F ]i+ 1

2
g′R

)
ξxdx = − ∂J

∂Ql
.

Performing integration by parts on the LHS, we obtain

LHS =−
∑
i

ˆ
Ωi

∂F

∂Q

dψ

dx
dx+

∑
i

ψ
∂F
∂Q
|i+

1
2

i− 1
2

+
∑
i

∂[F ]i− 1
2

∂Q

(
ψigL|1−1 −

ˆ 1

−1

ψ′igLdξ

)
+
∑
i

∂[F ]i+ 1
2

∂Q

(
ψigR|1−1 −

ˆ 1

−1

ψ′igRdξ

)
.

(30)

Recall that, for the CPR method, the correction functions satisfy

16DISTRIBUTION A: Distribution approved for public release



gL(−1) = gR(1) = 1

gL(1) = gR(−1) = 0.

Furthermore, a DG correction function gdg of degree k+ 1 is perpendicular to P k−1, i.e.,
ˆ 1

−1

gdg(ξ)φ(ξ)dξ = 0, , ∀φ ∈ P k−1.

Therefore, if a DG correction function is used, Eq. 30 can be simplified to

LHS = −
∑
i

ˆ
Ωi

∂F

∂Q

dψ

dx
dx+

∑
i

ψ
∂F
∂Q
|i+

1
2

i− 1
2

−
∑
i

∂[F ]i− 1
2

∂Q
ψi− 1

2
+
∑
i

∂[F ]i+ 1
2

∂Q
ψi+ 1

2
, (31)

or equivalently,

LHS = −
∑
i

ˆ
Ωi

∂F

∂Q

dψ

dx
dx+

∑
i

∂F com
i+ 1

2

∂Q
ψi+ 1

2
−
∑
i

∂F com
i− 1

2

∂Q
ψi− 1

2
. (32)

The first term is the governing equation for the continuous adjoint equation, which van-
ishes for the analytic adjoint solution. Notice that

∑
i

∂F com
i+ 1

2

∂Q
ψi+ 1

2
−
∑
i

∂F com
i− 1

2

∂Q
ψi− 1

2
=
∂F com

N+ 1
2

∂Q
ψN+ 1

2
−
∂F com1

2

∂Q
ψ 1

2
+
N−1∑
i=1

(ψi(1)− ψi+1(−1))
∂F com

i+ 1
2

∂Q

=
∂F com

N+ 1
2

∂Q
ψN+ 1

2
−
∂F com1

2

∂Q
ψ 1

2

when ψi(1) = ψi+1(−1) for the analytical adjoint solution. So the final equation is

∂F com
N+ 1

2

∂Q
ψN+ 1

2
−
∂F com1

2

∂Q
ψ 1

2
= −∂J

∂Q
. (33)

As discussed in Ref. [47, 75], a well-defined dual-consistent boundary flux should only be
a function of the boundary state F com = F com(Qbc(QL)), and a properly-defined dual-
consistent output functional leads to Eq. 33 and is consistent with the dual boundary
condition for the continuous adjoint equation (Eq. 24). Therefore, Eq. 28 can be satisfied
exactly with an analytical adjoint solution. A similar procedure can be applied to the
system of equations in 2D. The corresponding equation to Eq. 33 is

ˆ
Γ

ψT
∂F com

∂Q
ds =

∂J
∂Q

, (34)

which will be used to analyze the dual consistency for the 2D linear wave equation and
the Euler equations in the next section.

Based on the analysis, the key factors to ensure a dual-consistent CPR formulation
are summarized next.

1. In order to ensure the integral accuracy of the discrete adjoint equation in a vari-
ational form, an accurate quadrature rule defined on the solution points should be
exact for a degree 2k polynomial. Recall that a k+1 point Gaussian quadrature rule
can yield an exact integration of a degree 2k + 1 polynomial. Therefore, the Gauss
quadrature points are preferred as the solution points. The Lobatto quadrature rule
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can only integrate a degree 2k − 1 polynomial exactly. If the Lobatto points are
used as the solution points, the CPR formulation will have an accuracy loss for the
discrete adjoint solution and the corresponding error estimation.

2. The correction function g in the CPR method must be perpendicular to the deriva-
tives of the adjoint solution

ˆ
Ω

gψ′dΩ = 0. (35)

If we assume that the discrete adjoint ψ belongs to the same space of the primal
solution, the degree of the derivative ψ′ is k− 1. Then the only qualified correction
function is the DG correction function gdg, which is perpendicular to P k−1. On
the other hand, the degree of the adjoint solution ψ is determined by the specific
correction function. Suppose we use the g2 correction function, which is only per-
pendicular to P k−2. To satisfy this condition, the degree of the discrete adjoint
solution ψ is automatically degenerated to k − 1. In summary, for a CPR scheme
with a correction function gm, the discrete adjoint ψ ∈ P k+1−m.

3. The Lagrange polynomial (LP) approach is required to evaluate the flux divergence
term in the CPR formulation, instead of the chain rule (CR) approach. This re-
quirement is very similar to the conservation requirements for the CPR scheme.
Therefore, a similar fix can be obtained by following the conservation fix of the CR
approach [35]. However, the numerical results in the next section show that the
dual-inconsistent violation by the CR approach is relatively weak.

4. A properly defined common numerical flux on the boundaries, and a well-defined
output functional, are critical in making the boundary terms in the adjoint equation
vanish.

2.2.5 Numerical Tests

Linear Advection Equation First, the dual-consistent CPR discretization and the
error estimation are verified with a first-order hyperbolic partial differential equation
(PDE). Consider a 2D linear wave equation

∇ · ~cQ = f, x ∈ Ω

with a Dirichlet boundary condition

Q(~x) = B(~x), x ∈ ∂Ω−

given on the inflow boundaries ∂Ω− = {~x ∈ ∂Ω| ~n ·~c < 0}, where ~n is the outward surface
normal direction and ~c is the advection velocity (Figure 2a) prescribed as

~c = (e−x, ey).

The solution is set to be

Q(~x) = eysin(
π(ex − 1)

e− 1
),

which determines the source term f by the method of manufactured solutions [50].
The simulation is performed on a unit square Ω = [0, 1]2 filled with quadrilateral

elements. The output of interest is defined on the outflow boundaries ∂Ω+ = {~x ∈
∂Ω| ~n · ~c > 0} as
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J (Q) =

ˆ
∂Ω+

g(~x)(~n · ~cQ)ds,

where the weighting function

g(~x) =
πex−y

e− 1
.

The exact value of the output is J = 2e.
In this case, Eq. 34 leads to

ˆ
∂Ω+

ψ
∂F com

∂Q
ds = − ∂

∂Q

ˆ
∂Ω+

g(~x)(~n · ~cQ)ds,

which is equivalent to the boundary condition for the continuous adjoint equation
ˆ
∂Ω+

(~n · ~c)ψ + (~n · ~c)g(~x)ds = 0.

The common flux F com(QBC(QL), ~n) = ~n · ~cQL is chosen for the boundaries to ensure
that the CPR method for the linear wave equation with this output is a dual-consistent
formulation.

The contours of the primal solution and the adjoint solution are shown in Figure 2.
Based on the dual-consistency analysis, we choose the Gauss points as the solution points
and the DG correction function gdg. Figure 3 shows the convergent rate of the primal
solution, the output functional and the error estimate using the CPR method. The opti-
mal order O(hk+1) is obtained for the primal solution. Super convergence of the output
functional and the error estimate is good indicator of a dual-consistent discretization.
For this case, a super convergence of O(h2k+1) is observed for both of the output error
and the adjoint-based output error estimate. The corrected output converges 2 orders
faster than the original output, which is O(h2k+3). The results of the CPR method with
Lobatto points and gdg is shown in Figure 4a. Comparing with the results of the Gauss
points, the accuracy loss of the quadrature rules defined on the Lobatto points leads to
one order loss in the output functional, the error estimate and the corrected functional.

Now we test the influence of the correction functions on the output functional and
the error estimate. As discussed in [54], for a integral m ≥ 1, a correction function gm
of degree k + 1 is perpendicular to P k−m, and the Fourier analysis indicates that the
order of the corresponding scheme is O(h2k+2−m). The previous analysis shows that the
approximation order of the adjoint solution ψ is determined by the correction function
gm as O(hk+1−m).

Figure 4 shows the convergence rates using the g2 and g3 correction functions with the
Gauss points as the solution points. Similar relationships are obtained between the order
of accuracy of the functional outputs, the error estimate and the correction functions.
For the advection equation, the output functional and the adjoint-based error estimate
with the Gauss points and gm are accurate to order O(h2k+2−m). Furthermore, the
corrected outputs of the corresponding schemes are accurate to order O(h2k+4−m). The
convergence rates with the different CPR schemes are summarized in Table 1. Those
results are consistent with the analysis in section 2.2.3.

For a linear partial differential equation, the discrete adjoint based output error esti-
mation should recover the exact output error obtained by a finite difference method. Table
2 compare the true output error between k = 1 and = = 2 results and the adjoint-based
output error. The difference between them are within machine zero.

19DISTRIBUTION A: Distribution approved for public release



(a) Primal solution (b) Adjoint solution

Figure 2: The primal and adjoint solution of the linear advection equation

SPs g primal L2 err. output error output error est. corrected output error
Gauss DG k+1 2k+1 2k+1 2k+3
Lobatto DG k+1 2k 2k 2k+2
Gauss G2 k+1 2k 2k 2k+2
Gauss G3 k+1 2k-1 2k-1 2k+1

Table 1: Convergence rates for the linear wave equation with different schemes

The Supersonic Vortex Transportation Problem Second, we test the present
adjoint-based error estimation for the Euler equations with curved elements. The problem
we consider is a 2D supersonic vortex transported in a circular sector. The computational
domain is defined on a section of an annulus with the inner radius of rin = 1 and the
outer radius of 1.384. The initial mesh consists of k = 4 quadrilateral elements and is
shown in Figure 5a. The isentropic vortex rotates around the center of the circular sector.
The density ρ is only a function of the radius r (Figure 5b)

ρ(r) = ρin(1 +
γ − 1

2
M2
in(1− r2

in

r2
))

1
γ−1 ,

where γ is the ratio of heat capacities and the remaining parameters are the flow conditions
on the inner surface chosen as ρin = 2, Min = 2 and pin = 1

γ . The other variables can
be computed with the isentropic relations. Characteristic boundary conditions with the
analytical solution are used at both the inlet and the outlet, and slip wall boundary
conditions are applied on the inner and the outer boundaries. The output of interest is
the force in the x direction on the inner surface, where the pressure is equal to 1

γ , so the
exact value of the output is J = − 1

γ .
The output boundary operator jτ is defined as jτ = p~n ·~idir, where ~idir = [1, 0].

Therefore, the corresponding equation to Eq. 33 in 2D is
ˆ
∂Ω

ψT
∂F com

∂Q
ds = − ∂

∂Q

ˆ
∂Ω

∂p

∂Q
(~n ·~idir)ds,

which is equivalent to the boundary condition for the continuous adjoint equation

20DISTRIBUTION A: Distribution approved for public release



2

3

5

SQRT(DOFs)

E
rr

o
r

10 20 30 40 50 6070

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

10
­1

u­p1

J­p1

Est­J­p1

Corr­J­p1

(a) P1

3

5

7

SQRT(DOFs)

E
rr

o
r

20 40 60 80 100

10
­10

10
­9

10
­8

10
­7

10
­6

10
­5

10
­4

10
­3

10
­2

u­p2

J­p2

Est­J­p2

Corr­J­p2

(b) P2

4

7

9

SQRT(DOFs)

E
rr

o
r

40 80 120 160
10

­16

10
­14

10
­12

10
­10

10
­8

10
­6

10
­4

10
­2

u­p3

J­p3

Est­J­p3

Corr­J­p3

(c) P3

5

9.5

9.4

SQRT(DOFs)

E
rr

o
r

50 100 150 200

10
­14

10
­12

10
­10

10
­8

10
­6

10
­4

u­p4

J­p4

Est­J­p4

Corr­J­p4

(d) P4

Figure 3: Results for the linear advection equation using a CPR scheme with the Gauss
points and gdg

ˆ
∂Ω

ψT
∂p

∂Q


0
nx
ny
0

+ (~n ·~idir)
∂p

∂Q
ds = 0,

with the flux

F com(QBC(QL), ~n) = ~n · ~F (QBC(QL)) = p


0
nx
ny
0

 ,
chosen as the common flux on the boundaries. This ensures that the CPR method for
the Euler equations with this output definition is a dual-consistent formulation.

The adjoint solution with the dual-consistent boundary conditions and dual-inconsistent
boundary conditions are shown in Figure 5. The dual-inconsistent boundary conditions
generated some spurious oscillations near the wall, while the adjoint solution from the
dual-consistent boundary conditions was very smooth. Figure 6 displays the solution er-
ror, the output error and the adjoint-based error estimate. The optimal order of accuracy
k + 1 in L2 norm was obtained by both the dual-consistent and inconsistent boundary
conditions in the primal solution. However, a super convergence of order 2k + 1 was
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(a) Lobatto points with gdg as the correction function
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(b) Gauss points with g2 as the correction function
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(c) Gauss points with g3 as the correction function

Figure 4: Results for the linear advection equation with different correction functions
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Figure 5: The primal and adjoint solution for the supersonic vortex transportation prob-
lem (Gauss points, gdg,k = 3)
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Figure 6: The results of the supersonic vortex transportation problem using the dual-
consistent BC and the dual-inconsistent BC (Gauss points, gdg)
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Cells JH(QH)− Jh(Qh) −(ψh)TRh(QHh )

4 -7.85516345138E-002 -7.85516345117E-002
16 -1.25394717994E-002 -1.25394717999E-002
64 -1.83796281052E-003 -1.83796281080E-003
256 -2.63400045419E-004 -2.63400045485E-004
1024 -3.58710248100E-005 -3.58710248149E-005

Table 2: The output error by the finite difference method and adjoint-based error esti-
mation (coarse space k = 1, fine space k = 2)

SPs g ∇ · ~F primal L2 err. output error output error est. corrected output error
Gauss DG LP k+1 2k+1 2k+1 2k+3
Gauss DG CR k+1 2k+1 2k+1 2k+3
Lobatto DG LP k+1 2k 2k ≈ 2k + 1
Lobatto DG CR k+1 2k 2k 2k+1
Gauss G2 LP k+1 2k 2k 2k+2
Gauss G3 LP k+1 2k-1 2k-1 2k+1

Table 3: Order of accuracy for the supersonic vortex transportation problem

observed for the output with the dual-consistent boundary condition only. The spuri-
ous adjoint oscillation caused by the dual-inconsistent boundary condition degraded the
adjoint solution, and destroyed the super convergence property of the output functional.

Figure 7 and 8 show the convergence rates of the CPR method with different solution
points using both the LP and the CR approaches. Similar results were obtained with
the LP and CR approaches for the Gauss points: a super-convergence of order 2k+ 1 for
the output functional and the error estimate and a super convergence of 2k + 3 for the
corrected output. This indicates that the dual-consistency violation of the CR approach
is relatively weak, and does not affect the adjoint-based error estimate. However, with
the Lobatto points and the LP approach, accuracy loss did occur. The super convergence
of the corrected output is lost for the k = 1 scheme. The CPR schemes with Lobatto
points and the CR approach can reduce the alias error generated by the non-linear fluxes.
Even though the CR approach is not fully dual-consistent, the super convergence rates
are recovered for the Lobatto points, whose output functional and the error estimate are
accurate to a super convergence order of 2k and the order of the corrected output is
2k+1. Figure 9 shows the results of the CPR method with different correction functions.
Similar results as the linear wave equation are obtained. For the Euler equations, the
output functional and the adjoint-based error estimate with the Gauss point and gm are
accurate to order O(h2k+2−m). Furthermore, the corrected outputs of the corresponding
schemes are accurate to order O(h2k+4−m). The convergence rates with the different
CPR schemes are summarized in Table 3. The results of this test case indicate that the
dual consistent formulation performs as expected for a non-linear equations and curved
elements.

Inviscid Flow over the NACA0012 Airfoil The last test case in this section is a
subsonic flow over a NACA0012 airfoil with a free-stream Mach number of M∞ = 0.5
and an angle of attack, α = 2◦. It is used to further assess the accuracy of the adjoint-
based error estimation for a problem with a geometric singularity. The output of interest
is chosen as the lift or drag of the airfoil. The contours of the CL adjoint and the CD
adjoint are shown in Figure 1b and Figure 10. In this test case, the error in the functional
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Figure 7: The results of the supersonic vortex transportation problem with the Gauss
points
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Figure 8: The results of the supersonic vortex transportation problem with the Lobatto
points
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Figure 9: The results of the supersonic vortex transportation problem
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Figure 10: The 3rd component of the CD adjoint of an Inviscid NACA 0012 Airfoil at
M∞ = 0.5, α = 2◦

JH(QH)−Jh(Qh) is computed using p-enrichment from k = 2 to k = 3 and the effectivity
of the error estimation is defined as

ηeH =
−
∑
j ωj |Ji,j | (ψh)i,j ri,j(Q

H
h )

JH(QH)− Jh(Qh)
.

Due to the geometry singularity, the super convergence of the output functional and
its error estimate is lost. Table 4 shows the results with 4 levels of uniformly refined
meshes. Note that the error of the initial estimates on the very coarse meshes is large;
however, the effectivity index ηeH approaches unity as the mesh is refined for both CL and
CD. In addition, the error estimate with the CD adjoint is more accurate than with the
CL adjoint. This is due to the fact that the regularity of the CL adjoint is low because of
the singularity along the stagnation streaming line from the leading edge, while the CD
adjoint is relatively smooth.

Cells CL CD
JH(QH)− Jh(Qh) −(ψh)TRh(QHh ) ηeH JH(QH)− Jh(Qh) −(ψh)TRh(QHh ) ηeH

280 -8.90E-03 -1.84E-02 2.064 8.39E-03 8.51E-03 1.015
1120 -5.52E-03 -7.15E-03 1.295 1.93E-03 1.95E-03 1.011
4480 -1.59E-03 -1.68E-03 1.058 2.29E-04 2.29E-04 1.002
17920 -3.08E-04 -3.24E-04 1.049 2.13E-05 2.13E-05 0.999

Table 4: Adjoint-based error estimate for an inviscid NACA 0012 airfoil atM∞ = 0.5, α =
2◦ (coarse space k = 2, fine space k = 3)

2.3 Adjoint-based Error Estimation and H-adaptation
2.3.1 Adjoint-based H-adaptation

An adjoint-based error estimation relates a specific functional output error directly to the
local residual error. Therefore, it can be used to construct a very effective error indicator
to drive an adaptive procedure for any engineering output. From Eq. 20, the output error
can be estimated by performing a quadrature rule as

δJh(Qh) ≈ −
∑
i

∑
j

ωj |Ji,j |ψi,jri,j(QHh ).
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Figure 11: The procedure of the adjoint-based h-adaptation

The continuous adjoint solution ψ is approximated by solving ψh on the finner space
through enriching the degree of the solution polynomial. The finer solution Qh is obtained
by performing several iterations of GMRES relaxation after prolongating from the coarse
solution QH

QHh = IHh QH ,

with an injection operator IHh . The adjoint-based local error indicator ηi used in the
present study is defined by taking an absolution value of the elemental output error
contribution

ηi = |
∑
j

ωj |Ji,j |
(
ψh − IHh ψH

)
i,j
ri,j(Q

H
h )|.

Here, to achieve a better estimate, the adjoint defect between the coarse level and fine
level ψh − IHh ψH is used. For a system of equations, the local error indicator is formed
by summing together every component’s contribution to the functional error estimate.

Figure 11 shows the procedure of the adjoint-based h-adaptation. A fixed-fraction
hanging-node h-adaptation strategy is used in the present study. At each adaptation
step, a fixed fraction f = 10% of the candidate elements with the largest error indicators
are adapted. The marked elements are refined isotropically through its local mapping
functions. As a result, the newly inserted boundary points may not lie on the geometry.
In order to ensure the accuracy of the geometry approximation, all of the newly inserted
boundary points are remapped to the real geometry by querying the stored geometry
information for each boundary element. Then the coordinates of the interior points of the
modified elements are updated by a transfinite interpolation from the boundary points.

2.4 Numerical Results
2.4.1 Inviscid Flow over the NACA0012 Airfoil

This is the same case used in section 2.2.5. To assess the effectiveness of the adaptation
driven by the adjoint-based error indicator, h-adaptations with CL and CD as the output
of interest are performed using quadrilateral elements with a 4th order scheme (k = 3).
The newly inserted points on every adaptation stage are remapped to the real NACA0012
airfoil to reduce the geometry approximation error. The initial mesh consists of 560 p4
curved elements. The initial mesh and the final adapted meshes using lift and drag
adjoints are shown in Figure 12. Regions near the trailing edge and around the airfoil
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(a) The initial mesh

(b) CL Adjoint (c) CD Adjoint

Figure 12: Adapted mesh for the adjoint-based h-adaptation for a inviscid NACA 0012
airfoil at M0 = 0.5, α = 2◦ (k = 3)

surface are refined using either the lift or drag adjoint. It is well-known that the trailing
edge singularity can generate spurious entropy. Therefore, refinement near the trailing
edge is very important to predict an accurate drag value. Adaptations using lift-adjoint
added some degrees of freedom on the stagnation streamlines, where the lift adjoint is
singular and oscillatory. Figure 13 displays the Mach and adjount solution distributions on
the initial and adapted meshes. Note the significant improvement in solution smoothness
in both the Mach and lift-adjoint contours from the initial mesh to the adapted mesh.
This improvement was achieved because the present adaptation framework considers both
of the primal and adjoint solutions.

The convergence histories of the lift and drag coefficients are shown in Figure 14.
The corrected outputs are computed using the adjoint-based error estimate. The results
show that the corrected values converge much faster than the uncorrected ones, and all
converge to the same value. The estimated error at the last adaptation stage is around
10−10. So the truth CL and CD in this section are the values from the final adapted mesh.
Figure 15 shows the output error of the adaptation with the uniform refinement results
for comparison. An effective convergence rate of at least 6th order was achived for both
CL and CD with h-adaptation. It is clear that the adjoint based h-adaptation framework
reduced the computational cost by orders of magnitude in term of the number of DOFs.

2.4.2 Laminar Flow over the NACA0012 Airfoil

In this case, we consider subsonic laminar flow over a NACA0012 airfoil with freestream
M0 = 0.5 and angle of attack α = 1◦. The Reynolds number based on the chord length
of the airfoil is Re = 5000. The same initial mesh for the inviscid test case was used in
this test. The drag and lift coefficients are again the outputs of interest. Adjoint-based
h-adaptation with k = 3 are driven by the output-based error indicator. Additionally,
uniform h-refinement is performed to compare those adaptation strategies.

Figure 16 compares the Mach contours on the initial mesh and the final adapted mesh
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(a) Mach contours on the initial mesh (b) CL adjoint ψ2 on the initial mesh

(c) Mach contours on the adapted mesh (d) CL adjoint ψ2 on the adapted mesh

Figure 13: Primal and adjoint solution of the adjoint-based h-adaptation for a inviscid
NACA 0012 airfoil at M0 = 0.5, α = 2◦ (k = 3)

and presents the adapted meshes from different adaptation strategies. Note that regions
near the stagnation streamlines and in the boundary layer were targeted for refinements.
The trailing edge was also refined repeatedly to reduce the effect of the singularity.

Figure 17 displays the convergence of the lift and drag coefficients using adjoint-based
error estimate in terms of nDOFs. It is obvious that both the lift and drag coefficients,
from all adaptation strategies, converge to the same value. Note that the corrected
outputs converge much faster than the uncorrected ones. The truth outputs are chosen
from the output-based h-adaptive simulations with k = 3, whose estimated error is less
than 10−8 at the final stage. Figure 18 compares the CL and CD error of all tested
adaptation strategies with results from uniform h-refinements. With h-adaptation, an
effective convergence rate of 6th order was achieved for both the CL and CD, as shown
in the figure. Again it is shown that the ajoint based h-adaptation approach can reduce
the computational cost by orders of magnitude.

2.4.3 Inviscid Flow over a Sphere

In this case, we consider subsonic inviscid flow over a sphere. The p3 hexahedral mesh is
used for this simulation. Figure 19 shows the outline of the computational domain and
the initial surface mesh on the sphere. The inflow Mach number is set to be 0.3 with an
angle of attack α = 0◦.

First, to demonstrate the super convergence of the output using a dual-consistent CPR
formulation, a uniform refinement study is performed. As shown in Figure 20, a super
convergence of 2k+1 is obtained for the CD error with k = 1 and k = 2. For the adaptive
simulation, a relative coarse mesh which has 480 p3 hexahedral elements is used as the
initial grid and the 3rd order CPR scheme with the Gauss points as the SPs/FPs and the
LP approach is tested. The adaptation is driven by the adjoint-based error indicator with
drag as the output of interest. On each adaptation level, 10% of the current elements with
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Figure 14: CL and CD convergence of the adjoint-based h-adaptation for a NACA 0012
airfoil at M0 = 0.5, α = 2◦ (k = 3)
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Figure 15: CL and CD error of the adjoint-based h-adaptation for a NACA 0012 airfoil
at M0 = 0.5, α = 2◦ (k = 3)

(a) Mach contours on the initial mesh (b) Mach contours on the adapted mesh

(c) CL adjoint (d) CD adjoint

Figure 16: Adjoint-based h-adapted mesh for a NACA 0012 airfoil at M0 = 0.5, α =
1◦, Re = 5000 (k = 3)
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Figure 17: CL and CD convergence for a NACA 0012 airfoil at M0 = 0.5, α = 1◦, Re =
5000 (k = 3)
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Figure 18: CL and CD error for a NACA 0012 airfoil at M0 = 0.5, α = 1◦, Re = 5000
(k = 3)
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Figure 20: CD error for the inviscid flow over a sphere problem.

the largest error are marked to be refined. The adapted mesh and the Mach contours are
shown in Figure 21. Regions around the sphere surface are refined persistently. Figure 22
compares the drag coefficient error of the adaptive simulations with the results from the
uniform h-refinements. It is clear to see that the current adaptive method could produce
much more efficient error reductions in terms of the number of the DOFs. An effective
convergence order of 6 is obtained through the adaptation, which is much faster than the
uniform refinements. This preliminary adaptation results demonstrates the effectiveness
of the present adaptive method for a 3D problem.

Figure 19: The initial p3 curved hexahedral mesh for the inviscid flow over a sphere
problem.
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(a) Adaptation level 1 (b) Adaptation level 4

Figure 21: Mach contours on the adapted mesh for the inviscid flow over a sphere at
M0 = 0.3, α = 2◦ (k = 2).
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Figure 22: CD errors of the inviscid flow over the sphere at M0 = 0.3, α = 2◦(k = 2).

2.4.4 Laminar Flow over a Sphere

Next, we consider steady viscous flow over a sphere. The same settings from the Ref.
[94, 95] is utilized for the comparison purpose. The Reynolds number based on the sphere
diameter is chosen to be 118. The inflow Mach number is 0.2535 with an angle of attack
α = 0◦. The 3rd order CPR scheme with the Gauss points as the SPs/FPs and the
LP approach is tested. Figure 23a shows the initial mesh which has 480 p3 hexahedral
elements and the corresponding Mach number contours.

The adaptation is driven by the adjoint-based error indicator with drag as the output
of interest. On each adaptation level, 10% of the current elements with the largest error
are marked to be refined. The adapted mesh and the Mach contours on each adaptation
level are shown in Figure 23. Regions around the sphere surface are refined persistently.
The reference CD = 1.0162 is chosen from Ref. [95, 19]. Figure 24 compares the drag
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coefficient error of the adaptation with the result from the uniform h-refinements. A
super convergence rate of 2k is obtained for the uniform h-refinement. The adjoint-based
adaptation shows a faster convergence, whose effective order of accuracy is 5.9.

XY

Z

(a) The initial mesh

XY

Z

(b) The adapted mesh, level 3

Figure 23: Mach contours and the adapted mesh for the viscous flow over a sphere problem
at M0 = 0.2535, Re = 118 and α = 0◦ (k = 2).
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Figure 24: CD errors of the viscous flow over a sphere at M0 = 0.2535, Re = 118, α = 0◦

(k = 2).

2.4.5 Laminar Flow over a Delta Wing

In this test case, we consider laminar flow over a delta wing at Mach number M0 = 0.3
with a high angle of attack α = 12.5◦. This case is a part of the International workshop on
high-order methods (HOW) and the EU ADIGMA project. The Reynolds number based
on the root chord is 4000. The Prandtl number is set to 0.72 and the constant viscosity
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(a) Adaptation level 0 (b) Adaptation level 1 (c) Adaptation level 2

(d) Adaptation level 3 (e) Adaptation level 4 (f) Adaptation level 5

Figure 25: Mach number and the adapted mesh slices on different adaptation stages for
the delta wing case.

is used. The delta wing has a swept sharp leading-edge and a blunt trailing edge. The
Mach number contours of the flow around the delta wing at different adaptation stages
are shown in Figure 25. Both of the singularity along the leading edge and the regions
around the smooth vortices are targeted to refine. The Mach number distribution is
much smoother after several adaptation levels. Figure 26 shows the residual history of
the whole adaptation procedure. For each adaptation stage, the residual norm drops 10
order. Figure 27 compares the CD error and the CPU time of the adaptation with the
result from the uniform refinements.

2.4.6 Laminar Flow over an Analytic 3D Body

As the final case, we consider laminar flow over a streamlined analytic 3D body. This test
case is a part of the International workshop on high-order methods (HOW) and the EU
ADIGMA project. The inflow Mach number is set to 0.5 at an angle of attack α = 1◦.
The Reynolds number is 5000 with adiabatic no-slip wall boundary condition enforced on
the body surface. The viscosity is assumed to be a constant and Prandtl number is set
to 0.72. The reference area is 0.05 and the reference drag coefficient CD = 0.06317 from
the HOW results is used. The coarsest mesh from the HOW website is used as the initial
mesh, which consists of 768 p4 curved hexahedral elements. The drag adjoint is used to
drive the mesh adaptation procedures. The adapted mesh and the Mach contours are
shown in Figure 28b. The refinements are mainly performed around the leading edge and
around the body surface. Figure 29 display the residual history and the CD error.
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Figure 26: The residual history of the whole adaptation procedure for the delta wing
case.
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Figure 27: CD error and the CPU time of the delta wing case.
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Figure 28: Laminar flow over an analytic 3D body at M0 = 0.5, α = 1◦ and Re = 5000.
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Figure 29: Results of the laminar flow over an analytic 3D body.
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3 Results and Discussion on Subgrid-scale Stress Model
Evaluation

3.1 Governing Equation and SGS Models
The governing equations for three dimensional turbulent flows are the three dimensional
Navier-Stokes equations. As a simpler counterpart, we consider the one dimensional
Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂2x
, x ∈ [−1, 1], (36)

where u is the state variable such as velocity, ν is a constant viscosity. In the present
study, ν = 8E − 05 is chosen to imitate a high Reynolds number flow problem. To derive
the LES governing equation, we apply a low-pass spatial filter, G∆(x, ξ) satisfying the
following conservative property

ˆ ∞
−∞

G∆(x, ξ)dξ = 1, (37)

where ∆ denotes the filter width. A typical filter, the box filter, is defined below,

G∆(x, ξ) =

{
1
∆ |x− ξ| ≤ ∆

2 ,

0 otherwise
(38)

The filtering process is defined mathematically in the physical space as a convolution
product. The filtered variable φ̂(x, t) of a space-time variable φ(x, t) in 1D is defined as

φ̂(x, t) =

ˆ ∞
−∞

G(x, ξ)φ(x, t)dξ. (39)

The filtering process is linear, i.e. ˆφ+ ϕ = φ̂ + ˆphi. If the filter width is constant, the
differential and the filter operators commute, i.e. ∂̂φ

∂x = ∂ ˆphi
∂x . In the present study, all

the filtering processes are done with the box filter. After applying the filter to Eq.36, we
obtain

∂û

∂t
+ û

∂û

∂x
= ν

∂2û

∂2x
−
∂( 1

2 ûu−
1
2 ûû)

∂x
. (40)

The unclosed term arises due to the filtering of the nonlinear convection term

τSGS =
1

2
ûu− 1

2
ûû. (41)

This is the SGS of the Burgers’ equation. SGS models act as the closure of the governing
equation. In this section we review some of the ideas and translate them to work for the
one dimensional Burgers’ equation.

3.1.1 Static Smagorinsky Model

The SS is in the eddy viscosity form. For 3D incompressible flow, the SGS stress is defined
as,

τSGSij = −2νSGSŜij , (42)

where Ŝi,j is the resolved rate of strain tensor, and

Ŝi,j =
1

2
(∂iûj + ∂j ûi). (43)
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The SGS viscosity, νSGS is modeled following the mixing length idea

νSGS = (cs∆)2

√
2|Ŝ|2, (44)

where |Ŝ|2 = ŜijŜji, cs is the prescribed coefficient. By comparing the mean SGS dissipa-
tion from DNS data and the modeled SGS dissipation, cs can be determined. Lilly used
this procedure for isotropic turbulence to obtain cs = 0.16. The SS was described by Moin
and Kim Moin P [81], Rogallo and Moin Rogallo RS [86], Lesieur and Metais Lesieur M
[66] and Pope SB [88]. The deficiency of this model first showed up in the comparison
of the modeled SGS stress and the true SGS stress computed from the DNS solution
by Clark et al. Clark RA [22], McMillan and Ferziger McMillan OJ [79], and Bardina
et al. Bardina J [6]. The comparisons imply that the model does not capture the SGS
adequately. In Meneveau C [80], Meneveau et al. gave an explanation of this problem.
Another weakness of this model is that it gives non-zero eddy viscosity in laminar-flow
regions. Therefore a wall function is needed to damp the SGS viscosity in a wall-bounded
flow. Next, we derive its 1D formulation. The rate of strain in 1D is

νSGS = (cs∆)2|∂xû|. (45)

Therefore the SGS stress becomes

τSGS = −νSGSŜ (46)

3.1.2 Dynamic Smagorinsky Model

The coefficient, cs, in SS is prescribed. However, it is found empirically that cs depends
on the flow, being 0.1 for plane channel flow and 0.2 for isotropic turbulence Durbin P. A
[28]. The DS makes it a variable spatially and temporally. It introduces a test filter to
the resolved scales and uses the assumption of scale invariance to compute the model
coefficient. As the model for three dimensional turbulence is readily available, we derive
it for the 1D Burgers’ equation next.

Following Eq. 40, we consider the 2nd filter with width ∆̂ , defined as ∆̂ = γ∆. By
applying this filter to the SGS stress, we obtain

τ̂SGS =
1

2
˜̂uu− 1

2
˜̂uûuu. (47)

By applying the filter to the LES solution, we obtain the resolved stress,

L =
1

2
˜̂uûuu− 1

2
˜̂u˜̂u. (48)

The Germano identity can be written as

T = τ̃SGS + L (49)

where T = 1
2

˜̂uu− 1
2

˜̂u˜̂u. We apply the SS to both T and τ nd assume they share the same
coefficient, cs,

−(cs∆̃)2|∂x ˜̂u|∂x ˜̂u = −(cs∆)2 ˜|∂xû|∂xûu+ L. (50)

We define
M = ∆2 ˜|∂xû|∂xûu− ∆̃2|∂x ˜̂u|∂x ˜̂u. (51)

Thus c2s = L
M . It is assumed that cs is spatially uniform so that it can be extracted from

the test-filtering operation (Ghosal et al 1995)Ghosal S [39]. In the 1D test, we take the
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most common choice of γ = 2. In three dimensions, this is an over-determined system.
To minimize the square error, Lilly used the following approach

c2s =
〈LijMij〉
〈MijMij〉

, (52)

where 〈·〉 means averaging along the homogeneous direction. The DS gives a highly
variable eddy viscosity field Germano M and WH [38] including negative values which
makes the simulation unstable. Averaging over homogeneous directions was used by
Germano et al. Germano M and WH [38] to prevent this problem. Ghosal et al. Ghosal S
[39] showed that this procedure minimizes the total error in the homogeneous region over
which the averaging is performed. With these modifications, the eddy viscosity still can
be negative. So the value of c2s is clipped to be non-negative. In 1D, we don’t have these
problems. Thus we don’t use a least square averaging operation. But we still require c2s
to be non-negative.

3.1.3 Scale-Similarity model

The SSM was first introduced by Bardina et al. Bardina J [6]. It assumes scale invariance
between the computable stress L and the SGS stress τSGS . This assumption was verified
with empirical band pass-filtered PIV measurements by Liu et al. Liu S [73]. It suggests
that is similar to a stress constructed from the resolved scales,

τSGS = cssmL, (53)

where L s the resolved stress, which is given in Eq. 48. Many different second filter widths
were suggested by various researchers. The Bardina’s original model uses the same filter
width for the two filters, i.e. ∆ = ∆̂ and γ = 1. Liu et al used γ = 2 and Akhavan et
al use γ = 4

3 Akhavan R [2]. The coefficient cssm is empirical and found to be close to
1. In the 1D test, cssm is adjusted to be 0.25 with , based on an analysis performed in
Z.J. Wang [120]. In Bardina J [6], the true and modeled stresses showed a high degree of
correlation in Bardina et al’s a priori tests, and the SSM allowed for energy backscatter.
However, this model was found to be not sufficiently dissipative. Energy accumulated at
small scales and finally led to numerical instability. In the present study, we will duplicate
this result with a non-dissipative numerical scheme, and will show that the phenomenon
does not occur with the dissipative FR/CPR method.

3.1.4 Mixed Model

To resolve the above-mentioned problem of the SSM, the DS is included in the formulation
to add extra dissipation. In three dimensions, the mixed model (MM) is

τSGSij = cssmLij − 2νSGSŜij . (54)

Liu et al. showed that the magnitude of the similarity term is much larger than that of
the dissipative DS term. Hence, the high correlation of the SSM is not degraded by the
extra viscosity. Zang et al. used this model for recirculating flows with γ = 1. Wu and
Squires applied this model successfully with Lagrangian averaging in simulations of 3D
boundary layers Wu X [114]. There are dynamic ways to determine cssm as well. Vreman
et al proposed a two-parameter dynamic MM in which cs and cssm are both calculated
dynamically with γ = 1. In the present one dimensional study, the values cssm = 0.25
and γ = 2 are used. The SGS stress is defined as

τ = cssm(
1

2
˜̂uû− 1

2
˜̂u˜̂u)− νSGSŜ. (55)
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As will be shown later, the numerical instability of the SSM model is not a problem for
numerical schemes with embedded numerical dissipation. The study will be described
and discussed in Section 4.

3.1.5 Linear Unified RANS-LES Model

The wall-bounded turbulent flows at high Reynolds number are a significant challenge for
LES. The near wall region requires a high resolution grid to resolve the small energetic
scales. The linear unified RANS-LES model (LUM) combines RANS with LES to solve
this problem. The model equations for incompressible flows are

D̃Ũi
D̃t

= −∂(
〈p〉
ρ +

2kt
3 )

∂xi
+ 2∂(ν+νt)S̃ik

∂xk

D̃kt
D̃t

= −
∂((ν+νt)

∂kt
∂xi

)

∂xi
+ νtS

2 − 2 (1−c0)kt
τL

D̃ω
D̃t

= Cω1
ω
k nutS

2 − Cω2

Ckk
ω2 +

∂((ν+
νt

σomega
) ∂ω
partialxj

)

∂xj
+ Cω

k (ν + νt)
∂kt
∂xj

∂ω
∂xj

where Cω1, Cω2, Cω, Ck, c0andσω are all model constants, Ûi is the filtered velocity, kt
is the turbulent kinetic energy, ω is the specific dissipation, τL is the time scale and νt
is the modeled viscosity. In this work, we only focus on the LES aspect of the model.
Therefore τL is calculated with τL = last∆/k

1
2 , where l∗ = 1

3 . In summary, for the
one-dimensional Burgers’ equation, we solve D̂û

D̂t
=

∂(ν+νt)
∂û
∂x

∂x

D̂kt
D̂t

= −∂((ν+νt)
∂kt
∂x )

∂x + 2νt(
∂û
∂x )2 − 2 (1−c0)kt

τL

where νt = ktτL
3 , τL = l∗∆/k

1
2
t .

3.2 Numeric Methods
3.2.1 The High-order CPR/FR Method for the 1D Burger’s Equation

To give a complete picture of the LES, in this section, we briefly review the FR/CPR
method’s formula for the 1D Burgers’ equation. Huynh Huynh [54] developed a high-
order FR/CPR formulation, which was later employed for the Navier-Stokes equations
on hybrid 3D meshes T. Haga and Wang [94]. It has been used for 1D, 2D and 3D
laminar and turbulent flows. Validations and successful applications can be found in Gao
and Wang [35] Gao and Wang [36] Shi and Wang [92] Shi and Wang [91] Yu et al. [118]
Li and Wang [69]. In this study, we apply the 3rd order FR/CPR scheme to the 1D
Burgers’ equation and evaluate its performance with various SGS models. The FR/CPR
formulation for the inviscid 1D Burgers’ equation is given as

∂ui,j
∂t

+ Π(
∂F (ui)

∂x
) +

1

∆xi
(αR,j [F

n]i + 1/2alphaL,j [F
n]i − 1/2) = 0, (56)

where ui,j is the solution at solution point j of element i, ui is the solution polynomial for
element i, Π(∂F (ui)

∂x ) denotes the projected flux derivative at the solution point, Deltaxi
is the length of element i, [Fn]i+1/2 and [Fn]i−1/2 are the differences between the local
flux and the common Riemann flux at the right and left interfaces of element i, αR,j and
αL,j are the correction coefficients independent of the solution variables. For the viscous
term on the right hand side of Burgers’ equation, we follow the BR2 approach Bassi and
Rebay [10]. The 1D version is described below. First we introduce a new variable R = ∂u

∂x .
The corrected gradient is then

Ri,j =
∂ui,j
∂x

+
1

∆xi
(αR,j [u

com − ui]i+1/2 + αL,j [u
com − ui]i−1/2), (57)
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where [ucom]i+1/2 and [ucom]i−1/2 are the common solutions at interfaces, [ui]i+1/2 and
[ui]i−1/2 are the solutions from element i at the interfaces. The common solution is
defined as

ucomi+1/2 =
u−i+1/2 + u+

i+1/2

2
, (58)

where u−i+1/2 = [ui]i+1/2 and u+
i+1/2 = [ui+1]i+1/2 are the solutions at the left and right

sides of interface i + 1/2. Next, the viscous flux, F ν = ν ∂u∂x , at solution points can be
calculated by

F νi,j = F ν(Ri,j). (59)

Then ∂F ν

∂x can be obtained by using the Lagrange polynomial approach. The common
viscous flux at the interface is needed to correct ∂F ν

∂x at solution points,

F ν,comi+1/2 = ν(
∂u

∂x
)comi+1/2. (60)

For the common gradient,

(
∂u

∂x
)comi+1/2 =

1

2
((
∂u

∂x
)−i+1/2 + r−i+1/2 + (

∂u

∂x
)+
i+1/2 + r+

i+1/2). (61)

where (∂u∂x )−i+1/2 and (∂u[ ∂x])+
i+1/2 are the gradients of the solution of the left and right

cells with no correction, r−i+1/2 and r+
i+1/2 are the corrections to the gradients due to the

common solution at the interface. More specifically, the corrections are,

r−i+1/2 =
1

∆xi
(α−[ucom − u−]i+1/2), (62)

r+
i+1/2 =

1

∆xi+1
(α+[ucom − u+]i+1/2), (63)

where alpha− and α+ are the interface correction coefficients.

3.2.2 Temporal Discretization

The explicit SSP three-stage 3rd order Runge-Kutta scheme Gottlieb and Shu [43] is used
as the temporal discretization. Here we give a brief description. Rewrite the discretized
Burgers’ equation as

∂U

∂t
= Res(U), Ut0 = U0, (64)

where Res(U) is a function of solution U and t. Given solution Un, we obtain solution
Un+1 using

U (1) = Un + ∆tRes(Un), (65)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tRes(U (1)), (66)

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tRes(U (2)). (67)
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Figure 30: Initial condition (left) and the initial energy spectrum (right)

3.3 Initial and Boundary Conditions for 1D Burgers’ Equation
To imitate turbulence, the initial energy spectrum is given in the Fourier space k. In the
present work, the following initial spectrum is used

E0(k) =

{
A5−

5
3 1 ≤ k ≤ 5,

Ak−
5
3 k > 5,

(68)

where k is an integer varying from 1 to 1280. For each k, the velocity u has a random
phase angle, β, in [−π, π].

u(x) =
n∑
i

(2E0(ki))
1
2 sin(kix+ βi) + 1 (69)

A is a constant to make the turbulence intensity u′

ū = 0.7%, where u′ =
√

(
∑N
i=1(ui−ū)2

N ),
ū = 1. The two boundaries are set to be periodic due to the periodicity of the initial
condition.

3.4 Grid and Spatial filter
The computational domain is [−1, 1]. A mesh refinement study indicated that 8,192 cells
with the 3rd order FR/CPR method are required to resolve all the scales. Figure 31 shows
the energy spectrum at for the linear wave propagation with the same initial condition.
There is no visible decay at even the highest frequency. We consider the simulation at
this resolution a DNS, and denote ∆xDNS = 2

8192 . In the a priori study, the DNS solution
is filtered with a box filter with ∆ = 32∆xDNS . The filtered solution is obtained

ûi,j =
N∑
n=1

K+1∑
m=1

un,m ∗ wn,m,i,j , (70)

where N is the number of cells in the filtering stencil of the current degree of freedom
and K is the degree of the polynomial of the solution. In each cell, a Gauss quadrature
rule was implemented and w is the weighting coefficient. Then the filtered solution on the
DNS grid is projected to the (coarse) LES grid if necessary to serve as the LES solution.
In the current LES cell, the projected solution at each solution point j is calculated using

ˆ
∆xLES

Lk

K+1∑
j

Lj ûi,jdx =
N∑
n=1

ˆ
∆xDNS

Lk

K+1∑
j

lj ûn,jdx, (71)
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Figure 31: Turbulent energy spectrum at t = 0 and t = T

Table 5: Correlation coefficients of a priori test

∆xLES
∆xDNS

SS DS SSM Mix LUM
1 -0.10 0.6 0.95 0.89 -0.09
2 -0.10 0.6 0.95 0.89 -0.09
4 -0.10 0.6 0.95 0.89 -0.09
8 -0.10 0.6 0.95 0.89 -0.09
16 -0.10 0.6 0.95 0.89 -0.09
32 -0.09 0.59 0.95 0.88 0.04

where Lj is the shape function defined based on the solution points of the LES cell, lj is
the shape function based on the solution points of the DNS cell. In the a posteriori study,
we do the same thing to the DNS initial condition to generate the LES initial condition.

In Figure 32, ∆ = 8∆xDNS , ∆xLES = 4∆xDNS are used to demonstrate the filtering
operation. Different cell sizes for LES were tested to evaluate the influence of the trun-
cation error and the SGS modeling error. We call the filter used on the initial condition
the first filter and the filter used in deciding the coefficient of the dynamic model or com-
puting the resolved SGS stress the test filter. The test filter width is 2 times the width
of the first filter, which makes γ = 2.

3.5 Numerical Results and Discussions
In this section, the results for the a priori and a posteriori tests are presented. Due to
the nonlinear convection term, shock waves start to appear after a certain time. Thus
all results are obtained at a time T = 0.1 , when the solution is still smooth. Figure 33
shows the energy spectrum at t = 0 and t = T of the DNS. We can see that the high
frequencies are damped out by the physical viscosity while the lower frequencies remain.

3.5.1 A Priori Tests

Figure 34 shows the SGS stress computed using different models based on the filtered-DNS
data at t = T with various mesh resolutions and a fixed filter width of ∆ = 32∆xDNS .
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Figure 34: The SGS stress comparison in the a priori tests
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Table 6: Correlation coefficients of a posteriori test

∆xLES
∆xDNS

SS DS SSM Mix LUM
1 -0.08 0.6 0.95 0.89 -0.06
2 -0.08 0.6 0.95 0.89 -0.07
4 -0.08 0.6 0.95 0.89 -0.07
8 -0.08 0.6 0.95 0.89 -0.07
16 -0.08 0.6 0.95 0.89 –
32 -0.10 0.57 0.92 0.85 –

The ratio between the cell size of LES and DNS is (a) 1, (b) 2, (c) 4, (d) 8, (e) 16, (f) 32.
For the SS model, cs is set to the default value of 0.2 for all of the comparisons. For ILES,
the SGS stress is 0 everywhere. From Figure 34, we can make some general observation
regardless of mesh resolutions:

• No models are able to predict the true stress in both amplitude and phase (peaks
and valleys).

• Both the SSM and MM always correctly predict the phase of the true stress.

• SS correctly predicts the phase of the true stress about half the time, and DS agrees
with the SS when the phase is correct. When the stress computed with SS has a
wrong sign, DS sets the stress to 0.

• LUM agrees very well with SS in SGS prediction with enough grid resolution, but
diverges for the coarsest mesh.

Obviously the good phase prediction capability of the MM is due to the dominant SSM
term. Next we examine the correlation of the modeled stress with the true stress. Table
5 presents the correlation coefficients between the true SGS and the ones computed with
the models. Clearly the SSM and the MM models perform the best. The mesh resolution
∆xLES does not have any significant influence on the model behavior, except for LUM.
To further evaluate the behavior of these models in an actual computation, we perform a
posteriori tests next.

3.5.2 A Posteriori Tests

In this test, the filtered 1D Burgers’ equation is solved with different models on different
meshes with a fixed filter size ∆ = 32∆xDNS . The results at the same physical time
t = T are compared. Figure 35 shows the SGS stress computed using different models
with various mesh resolution.

In Figure 35, we can see that the results are very similar to those in the a priori test.
We can draw the same conclusions here. Table 6 shows the correlation coefficients for all
the a posteriori tests. The SGS stresses computed by SSM and the MM always show high
correlations with the true SGS stress. The DS comes the second. The SS and the LUM
models yield very low correlation with the true SGS stress. LUM diverged for some cases
and the correlation is not available. The LES mesh resolution does not have a significant
influence on the model behavior, except for LUM.

Figure 36 shows the comparison of the solution, û, for ∆xLES
∆xDNS

. The solution computed
with the true SGS stress is right on top of the filtered DNS solution. The solutions
computed with models and ILES all show differences with the filtered DNS solution.
Table 7 shows the L2 norm error comparison. When the LES mesh is sufficiently fine,
it is clear that the SSM and the MM produced the best solutions. This is because both
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Figure 35: The SGS stress comparison in the a posteriori tests

51DISTRIBUTION A: Distribution approved for public release



X

U

0.354 0.3545 0.355 0.3555 0.356 0.3565
1.0217

1.02172

1.02174

1.02176

1.02178

1.0218

filtered DNS solution

True SGS stress

ILES

SS

DS

SSM

Mixed

LUM

Figure 36: Solution Comparison

Table 7: L2 norm error of the solution

∆xLES
∆xDNS

True stress ILES SS DS SSM Mix LUM
1 2.03E-08 1.14E-05 1.57E-05 8.88E-06 7.02E-06 6.19E-06 1.80E-05
2 2.13E-08 1.14E-05 1.57E-05 8.88E-06 7.02E-06 6.18E-06 3.02E-05
4 4.60E-08 1.14E-05 1.57E-05 8.88E-06 7.01E-06 6.17E-06 5.62E-05
8 4.91E-07 1.14E-05 1.57E-05 8.97E-06 6.94E-06 6.25E-06 1.07E-04
16 1.09E-05 1.46E-05 2.01E-05 1.49E-05 1.18E-05 1.35E-05 –
32 1.38E-04 1.38E-04 1.41E-04 1.39E-04 1.37E-04 1.39E-04 –

52DISTRIBUTION A: Distribution approved for public release



models show the best correlation with the true SGS stress. When the LES mesh is coarse,
the truncation error is dominant. The results with any model and with the true SGS stress
are comparable. Clearly ILES is the best choice because it costs the least.

3.5.3 Sensitivity of the Models to the Mesh Resolution

Given the fixed filter width, we compare models’ behavior on different mesh resolution.
Figure 37 shows different modeled SGS comparison with respect to different. The ratio =
∆xLES
∆xDNS

. We can see that both in the a priori and the a posteriori tests, all the models
shows no sensitivity to ∆xLES except for the LUM.

3.5.4 Effects of Truncation Error vs. SGS Model Error

n large eddy simulations, the numerical results depend on many factors, including the
flow condition, the initial and boundary conditions, the numerical method, the computa-
tional mesh, the filter and the SGS model. Some of the factors are physical and others
are numerical, and they intertwine together to produce the final solution. At the most
fundamental level, the filter width ∆ in a LES is perhaps the most critical parameter,
and Pope discussed the importance of the filter width in SB [88]. The true LES solution
can be obtained by filtering the DNS solution using this ∆. In reality, however, the filter
width is often implicitly tied with the mesh size. In such cases, mesh refinement conver-
gence studies become impossible to perform because the filter size is always a variable.
One can only see convergence when the mesh size approaches that required of a DNS
simulation. Generally speaking, we want to accurately predict the SGS stress using the
numerical solution at the “resolved scale”. The filtered solution û is always taken to be
the solution at the “resolved scale”. Let’s consider the box filter here. When a solution
is filtered with a width ∆ , we often state that waves with shorter wavelengths than ∆
are filtered out. In fact, waves of wavelengths of 2∆ and 4∆ are heavily damped out too.
Based on our analysis, we can see that the amplitudes of 2∆ and 4∆ waves are reduced
by 36% and 10% respectively Z.J. Wang [120]. If we accept 36% filtering error as accept-
able, the “resolved scale” should be 2∆ instead of ∆. In addition, numerical methods also
have limited resolution depending on the “points per wave” (PPW) or “degrees of freedom
per wave” (DOFPW). Let’s assume that for the present 3rd order FR/CPR scheme, 9
DOFPW is required to resolve a wave. In other words, 3 elements are needed for a wave
since there are 3 DOFs in one element. A truly resolved scale must meet the accuracy
requirement from both the filtering operator and the numerical scheme. In this particular
case, the resolved scale is

SR = max(3∆xLES , 2∆), (72)

In order to have the resolved scale determined by the given filter width, ∆xLES should
satisfy the following requirement

∆xLES ≤
2∆

3
(73)

In the case of second-order finite volume methods, each element has 1 solution unknown.
If one requires 20 PPW for accuracy, the resolved scale is then

SR = max(20∆xLES , 2∆). (74)

If one chooses ∆xLES as the filter width, the resolved scale is 20 times larger than the
filter width because of the accuracy requirement. In other words, the numerical truncation
error is dominant in the LES results. This is the reason why we see smaller and smaller
differences between the ILES and LES with SGS models with the ∆xLES increase.
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Figure 37: The modeled SGS with different mesh resolution
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4 Investigation of Scale Similarity
From the comparison in the previous section, we see that the stress computed with the
scale similarity model shows the highest correlation with the true SGS stress. And we
discovered that they are related by a factor of 4, i.e,

L

τtrue
= 4. (75)

When we first saw the relation 75, we suspected that this was a bug. After we tested
different initial conditions, we were convinced that it was not a bug. The fact that relation
75 is true for arbitrarily-generated random initial conditions prompted us to look for a
deeper reason resulting in the following analysis.

4.1 Analysis of Scale Similarity with a Single Fourier Mode
For the sake of simplicity without loss of generality, we consider periodic data u(x) at a
given time on domain [−π, π]. The solution can be decomposed into the following Fourier
modes

u(x) =

inf∑
n=0

ane
inx, (76)

where i =
√
−1, and n is the wave number. To illustrate the basic idea, we first consider

a single Fourier mode, i.e., u(x) = einx and the top hat filter. The filtered solution is
then

û(x) =
1

∆

ˆ x+ ∆
2

x−∆
2

einξdξ = sinc(
n∆

2
) · einx, (77)

where sinc(n∆
2 ) =

sinn∆
2

n∆
2

. Obviously the filter only changes the magnitude of the solution,
but not the phase. In addition, we have

ûu(x) =
1

∆

ˆ x+ ∆
2

x−∆
2

ei2nξdξ = sinc(n∆) · ei2nx. (78)

The SGS stress is then

τ = ûu− ûû = sinc(n∆) · ei2nx − sinc2(
n∆

2
) · ei2nx

= [sinc(n∆)− sinc2(
n∆

2
)]ei2nx. (79)

Next we apply a second filter with a width of ∆2 = γ∆ to the resolved variable to
obtain

˜̂u(x) =
1

γ∆

ˆ x+ γ∆
2

x− γ∆
2

û(ξ)dξ = sinc(
n∆

2
)sinc(

γn∆

2
)einx, (80)

and

˜̂uû(x) =
1

γ∆

ˆ x+ γ∆
2

x− γ∆
2

û(ξ)û(ξ)dξ = sinc2(
n∆

2
)sinc(

γn∆

2
)ei2nx. (81)

The SGS stress of the resolved scale is then

L = ˜̂uû− ˜̂u˜̂u = sinc2(
n∆

2
)(sinc(γn∆)− sinc2(

γn∆

2
))ei2nx. (82)
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From Eqn.79 and Eqn. 82, we obtain

L

τ
=
sinc2(n∆

2 )(sinc(γn∆)− sinc2(γn∆
2 ))

sinc(n∆)− sinc2(n∆
2 )

. (83)

In the limit of small n∆, we have

sinc(n∆) = 1− (n∆)2

6
+O(n∆)4. (84)

Therefore, we obtain

L

τ
=

[1− (n∆)2

12 +O(n∆)4][− (γn∆)2

6 + (γn∆)2

12 +O(n∆)4]

− (n∆)2

6 + (n∆)2

12 +O(n∆)4
= γ2 +O(n∆)2. (85)

Note that the error term is quadratic. In the special case of γ = 2, L = 4τ . As it turns
out this result is also true for the Gaussian filter. The filtered solution with a Gaussian
filter is

û(x) =

ˆ inf

− inf

√
(

6

π∆2
)e−

6(x−ξ)2

∆2 einξdξ = sqrt(
6

π∆2
)

ˆ inf

− inf

e−
6(x−ξ)2

∆2 einξdξ. (86)

Set X =
√

6(x−ξ)
∆ , so that ξ = x− ∆√

6
X, dξ = − ∆√

6
dX. Thus, we have

û(x) =

√
6

π∆2
· ∆√

6

ˆ inf

− inf

e
−X2+in(x− ∆√

6
X)
dX

=

√
1

pi
einx
ˆ inf

−inf
e
−X2−in ∆√

6
X
dX = einxe−

(n∆2
24 . (87)

Similarly we can derive the following result

ûu(x) =

ˆ inf

−inf

√
6

π∆2
e−

6(x−ξ)2

∆2 ei2nxdξ

=

√
1

pi
ei2nx

ˆ inf

−inf
e
−X2−i2n ∆√

6
X
dX = ei2nxe−

(n∆)2

6 . (88)

The SGS stress is them

τ = ûu− ûû = ei2nxe−
(n∆)2

6 − ei2nxe−
(n∆)2

12 = ei2nxe−
(n∆)2

6 [1− e−
(n∆)2

12 ]. (89)

Again we apply a second filter with a width of ∆2 = γ∆ to the resolved field to obtain

˜̂u(x) = e−
(n∆)2

24 ũ(x) = e−
(n∆)2

24 e−
(γn∆)2

24 einx. (90)

and
˜̂uû(x) = e−

(n∆)2

12 ũu(x) = e−
(n∆)2

12 e−
(γn∆)2

6 ei2nx. (91)

The SGS stress of the resolved scale is

L = ˜̂uû− ˜̂u˜̂u = ei2nxe−
(1+2γ2)(n∆)2

12 [1− e
(γn∆)2

12 ]. (92)
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From 89 and 92, we obtain

L

τ
= e

(1−2γ2)(n∆)2

12
1− e

(γn∆)2

12

1− e
(n∆)2

12

. (93)

In the limit of small n∆, we have

L

τ
= (1 +O(n∆)2)

1− 1− (γn∆)2

12 +O(n∆)4

1− 1− (n∆)2

12 +O(n∆)4
= γ2 +O(n∆)2. (94)

4.2 Analysis of Scale Similarity with All Fourier Modes
Next we consider a solution with all the Fourier modes, i.e.,

u(x) =

inf∑
n=0

ane
inx. (95)

With the top hat filter, we obtain the following filtered solution

û(x) =

inf∑
n=0

ansinc(
n∆

2
) · einx. (96)

In addition, we have

ûu(x) =

inf∑
n=0

inf∑
m=0

anamsinc
(n+m)∆

2
ei(n+m)x. (97)

The SGS stress is then

τ = ûu− ûû =

inf∑
n=0

inf∑
m=0

anam[sinc
(n+m)∆

2
− sinc(n∆

2
)sinc(

m∆

2
)]ei(n+m)x. (98)

Next we apply a second filter with a width of γ∆ to the resolved variable

˜̂u =

inf∑
n=0

ansinc(
n∆

2
)sinc(

γn∆

2
)einx, (99)

and

˜̂uûu =

inf∑
n=0

inf∑
m=0

anamsinc(
n∆

2
)sinc(

m∆

2
)sinc(

γ(n+m)∆

2
)ei(n+m)x. (100)

The SGS stress of the resolved scale is then

L = ˜̂uûu− ˜̂u˜̂u

=

inf∑
n=0

inf∑
m=0

anamsinc(
n∆

2
)sinc(

m∆

2
)(sinc(

γ(n+m)∆

2
)

− sinc(γn∆

2
)sinc(

γm∆

2
))ei(n+m)x. (101)

Now let’s consider each term in Eqn. 98 and 101. It is obvious that
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2 )− sinc(γn∆
2 )sinc(γm∆

2 ))

sinc (n+m)∆
2 − sinc(n∆

2 )sinc(m∆
2 )

= γ2 +O[(n+m)∆]2. (102)

Therefore, we have
L

τ
= γ2 +O[(n+m)∆]2. (103)

n the same limit. The analysis with the Gaussian filter is similar and is not repeated
here.

4.3 Analysis of Scale Similarity in 2D
In two dimensions, we only perform a single mode analysis with the top hat filter. Consider
the following two dimensional velocity field

u(x, y) = einxeimy, v(x, y) = eipxeiqy. (104)

The filtered solution is then

û(x, y) =
1

∆2

ˆ x+ ∆
2

x−∆
2

ˆ y+ ∆
2

y−∆
2

einξeimηdηdξ = einxeimy · sinc(n∆

2
)sinc(

m∆

2
), (105)

v̂(x, y) =
1

∆2

ˆ x+ ∆
2

x−∆
2

ˆ y+ ∆
2

y−∆
2

eipξeiqηdηdξ = eipxeiqy · sinc(p∆
2

)sinc(
q∆

2
). (106)

In addition, we have

ûv(x, y) =
1

∆2

ˆ x+ ∆
2
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2

ˆ y+ ∆
2
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2

ei(n+p)ξei(m+q)ηdηdξ

= ei(n+p)xei(m+q)y · sinc( (n+ p)∆

2
)sinc(

(m+ q)∆

2
). (107)

The SGS stress is then

τ = ûv − ûv̂

= ei(n+p)xei(m+q)y[sinc(
(n+ p)∆

2
)sinc(
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2
)

− sinc(n∆

2
)sinc(
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2
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2
)]. (108)

Applying a second filter with a width γ∆ to the resolved variable, we obtain

˜̂u = einxeimy · sinc(n∆

2
)sinc(

m∆

2
)sinc(

γn∆

2
)sinc(

γm∆

2
), (109)

and
˜̂v = eipxeiqy · sinc(p∆

2
)sinc(

q∆

2
)sinc(

γp∆

2
)sinc(

γq∆

2
), (110)

Denote α = sinc(n∆
2 )sinc(m∆

2 )sinc(p∆2 )sinc( q∆2 ). Then we have

˜̂uv̂v = αũv, ˜̂u˜̂v = αũṽ. (111)
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The SGS stress of the resolved scale is then

L = ˜̂uv̂− ˜̂u˜̂v = α(ũv − ũṽ)
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2
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2
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2
)sinc(
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2
)]. (112)

From 108 and 112, we obtain

L

τ
= α

sinc(γ(n+p)∆
2 )sinc(γ(m+q)∆

2 )− sinc(γn∆
2 )sinc(γm∆

2 )sinc(γp∆2 )sinc(γq∆2 )
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2 )sinc( (m+q)∆

2 )− sinc(n∆
2 )sinc(m∆

2 )sinc(p∆2 )sinc( q∆2 )
. (113)

In the limit of small (n+m+ p+ q)∆, we have alpha ≈ 1, and

sinc(A+B) · sinc(C +D)− sincA · sincB · sincC · sincD = −AB + CD

3
+HOT. (114)

Finally, we derive the following result using Eqn. 114

L

τ
≈ γ2. (115)

4.4 Implications for Large Eddy Simulation
The present analysis shows that perfect scale similarity exists for arbitrary (periodic)
data including turbulence under the assumption that the spectrum contains relatively
low frequency contents with respect to the filter width, regardless of amplitude and phase
angle of each mode. Obviously for an arbitrary spectrum including both high and low
frequency contents, the present analysis is not valid. This is easily seen in Figure 38,
which displays the modeled and true SGS stress based on the full spectrum shown in
Figure 30, using the same filter width which is 16∆DNS . The correlation between the
modeled and true stresses is quite low.

Next let’s examine whether Eqn. 115 is true in an actual LES. The promise of the
SSM is that the SGS stress is highly correlated with the stress computed based on the
resolved scale, taken to be û. Take the top hat filter for example. Modes of smaller
wavelength than D corresponding to the cutoff wavenumber k∆ are filtered out. In LES,
it is believed that the SGS stress from higher modes close to the cutoff wave number k∆

plays an important role. In the next test, we therefore include modes between k∆ and 2k∆

using a filter width D/2 to filter the spectrum shown in Figure 30. The filtered solution is
then treated as DNS data, which is used to obtain the true stress. This true stress is also
compared with the stresses computed using the SSM based on the resolved scale, i.e., û.
Two test filter widths are used corresponding to γ = 1 and 2. The results are displayed in
Figure 38. Note that there is a reasonably high level of correlation between the stresses.

The ratio between the true and modeled stresses are computed using simple averages

L

τ
=
〈L〉
〈τ〉

. (116)

The correlation coefficients and the average stress ratios from 10 realizations are summa-
rized in Table 5. The table confirms that the true stress shows a quite high correlation
with the modeled stress, with an average correlation coefficients of 0.88 and 0.69 for γ = 1
and 2, respectively. In addition, γ = 1 demonstrates consistently higher correlation coef-
ficients than γ = 1. This may indicate that one should use the same filter width for the
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second filter in an SSM implementation. Furthermore, the ratio of the averaged stresses
remains a constant with different realizations, indicating that this ratio is only dependent
on the spectrum. However, the ratio is much smaller than γ2. This result appears to
agree well with others in the literature AW [4] Liu S [73].

4.5 Investigation of Stability of Scale Similarity Model
In Bardina’s original paper, the SSM was found unstable in some simulations when used
with a central finite difference scheme. To remedy the instability, a MM with the DS
model was developed to stabilize the simulations. In this section, we attempt to show
that the extra dissipation added by the MM is not necessary for the FR/CPR method
which has embedded numerical dissipation to automatically damp high frequency modes.
We first demonstrate that there is indeed a pile-up of high frequency modes with a central
difference scheme in solving nonlinear equations such as the Burgers’ equation, while there
is no such pile-up with a dissipative high-order FR/CPR scheme. For this purpose, we
conduct a numerical study with the initial condition of a single Fourier mode,

u(x) = 2(E0(1))1/2sin(πx) + 1. (117)

where = 2(E0(1))1/2 = 0.012. The 1D inviscid Burgers’ equation is employed to mimic
very high Reynolds number problems. We run the simulation until t = 26 when it is right
before a shock wave develops. First, the upwind flux and the central flux are employed in
the 3rd order FR/CPR scheme to compare their behaviors. Figure 40 shows the energy
spectrum at t = 26 with different mesh resolutions. On the finest mesh, both the central
and upwind schemes produced a converged solution within the visible energy spectrum in
the figure. On the two coarser meshes, we can see clearly that energy is piling up at high
frequencies on those meshes for the simulation with the central flux. But the upwind
flux is able to smoothly damp out the high frequency modes so that they are never
accumulated to cause stability problems. Next we test the influence of the SGS models
on the energy spectrum. Figure 41 shows the spectrum comparison of the simulations
with and without the SSM and MM. The filter width equals to the cell size. We can see
that with the central flux, the SSM neither damps out all the energy accumulated at high
frequencies nor accumulates more energy there. Thus the extra dissipation, i.e. the DS,
is necessary to stabilize the simulation. It is worth noting that the extra dissipation, in
the MM, also damps out the energy at some lower frequencies, which does harm to the
resolved large scales.

We also verify that a central difference finite difference scheme behaves similarly with
the CPR scheme with a central flux. Figure 42 indeed shows that the 4th order central
finite difference method has a similar performance to the 3rd order FR/CPR scheme with
the central flux. This means that for schemes that are not dissipative, more dissipation
may be necessary to stabilize the turbulent flow simulations with the SSM model. But
for the dissipative ones, such as the FR/CPR method with an upwind flux, no extra
dissipation is needed.
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5 Results and Discussion on MeshCurve: An Auto-
mated Low-Order to High-Order Mesh Converter

5.1 Low versus High-Order Meshes: An Illustrative Example
Figure 43 illustrates the difference between a low-order mesh and a high-order mesh with
a side-by-side comparison of two circular meshes. The key difference is the number of
nodes, with the low-order mesh, shown on the left, having fewer than the high-order
mesh, shown on the right. The extra nodes enhance simulation accuracy by serving as
secondary interpolation points. Also, they enhance geometric accuracy by tracing the arc
of curved edges.

The goal of meshCurve is to transform a mesh similar to the one on the left of figure
43 into a mesh similar to the one on the right, but in 3D. Figure 44 is a before-and-after
image from meshCurve. The additional nodes are not visible in the high-order mesh, but
the surface curvature is clearly discernible.

5.2 The Design of meshCurve
5.2.1 Feature Criteria

From our requirements, we assembled the following list of features for meshCurve.

• Full support for 3D unstructured CGNS meshes—any cell type in any combination.

• Support for multi-zone, multi-patch CGNS meshes, including the ability to selec-
tively reconstruct interior patches without affecting far-field boundaries.

• Mesh processing without CAD geometry files.

• Mesh processing in the face of complex edge arrangements and sharp corners.
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(a) a low-order mesh (b) a high-order mesh

Figure 43: A low-order mesh contrasted with a high-order mesh. The key difference is
that the high-order mesh has more nodes than the low-order mesh. The extra nodes
enhance the geometric accuracy by tracing the path of curved edges.

(a) a low-order mesh (b) a high-order mesh

Figure 44: Before-and-after comparison of a mesh upgraded with meshCurve. The addi-
tional nodes in the high-order mesh are not visible but the surface curvature is visible.
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• Easy-to-use graphical interface, requiring minimal effort to learn and navigate.

• Interactive 3D graphics to show the mesh and to provide visual feedback after the
upgrade.

• Cross-platform support—Linux, Windows, and Mac.

• Solid code base with minimal bugs, designed for maintainability and future up-
grades.

• Reasonably low memory footprint and fast operation on a desktop computer.

• Minimal reliance on outside software libraries to increase control of the code and
simplify design.

5.2.2 Design Decisions

To satisfy requirements, we made the following decisions.

• Programming would be in C++ due to the speed and flexibility of the language.
We opted for C++11, the most recent version of the language, because of newly
introduced optimizations and platform-independent multithreading. With multi-
threading, it would be possible to utilize the multiple cores of modern CPUs.

• To support our desired cross-platform graphical-user-interface (GUI), we selected
the popular Qt application framework.1 The Qt framework is a platform-independent
windowing library which includes multiple user interface widgets and support li-
braries. Applications built with Qt adapt to the target operating system. Conse-
quently, meshCurve appears to be an X11 application when run on Linux, a Win-
dows application when run on Microsoft’s OS, and a Macintosh application when
run on OS X. Figure 45 shows an annotated view of the meshCurve user interface
as it appears on Microsoft Windows. The figures elsewhere show the interface as it
appears on Linux (Ubuntu) and Mac OS X.

• For interactive 3D visualization, we chose the Visualization Toolkit (VTK), an open
source, cross-platform 3D visualization system created by Kitware.[89] VTK wraps
the underlying graphics APIs, simplifying cross-platform development while provid-
ing a capable visualization environment.

• For fast linear algebra, we decided to use the high-speed Armadillo C++ library.[87]
Armadillo interfaces platform-specific LAPACK and BLAS libraries to provide vec-
torized mathematics and fast matrix routines. Its syntax is based on Matlab, making
mathematical programming both simple and efficient.

• We constructed our own mesh database. Building our own database provided free-
dom to optimize for specific needs, while also granting flexibility to design for future
extensibility.

5.3 User Workflow
Figure 46 diagrams the mesh-processing workflow from the user’s perspective. The first
step of the workflow is the loading of a mesh file, either CGNS or Gmsh format. The
loaded mesh displays as a 3D view—rotatable, zoomable, and translatable via the mouse.
The view can optionally be set to wireframe or opaque solid, and separate patches within

1http://www.qt.io
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Figure 45: The meshCurve graphical interface, as it appears on Microsoft Windows 7.
By default, three panels are visible: 1) 3D viewing, 2) configuration setting, and 3)
information display. The information panel and the configuration panel can be hidden to
increase the size of the 3D viewport. A row of toolbar buttons and menus along the top
provide options to the user.

Figure 46: The mesh upgrade workflow from the user’s perspective.

66DISTRIBUTION A: Distribution approved for public release



the mesh can be drawn individually. Also, surface nodes can be displayed on the mesh.
Viewing the nodes is especially useful as a final verification after the upgrade has com-
pleted.

Figure 47: Screenshot of the program meshCurve, il-
lustrating patch selection. The green portions of the
mesh are the patches that have been selected for pro-
cessing.

The next step is to select
patches to process. During the
upgrade, the selected patches will
be given curvature. For efficiency,
unselected patches will not be
given curvature although they
will be given high-order nodes.
Figure 47 illustrates patch selec-
tion, showing a fighter jet mesh
with wing and tail patches se-
lected. Green highlight marks the
selection.

Next comes the identification
of feature curves, such as the rim
of an airplane canopy or the sharp
edge of a box. Feature curves de-
fine the geometry, so it is impor-
tant that meshCurve know the lo-
cation of the curves within the
mesh. Every feature curve may
be manually flagged edge-by-edge, via the mouse. Alternatively, the curves can be flagged
automatically by way of meshCurve’s own feature-curve detection engine. Employing
discontinuity detection algorithms developed by Jiao and Bayyana,[59] the feature-curve
detection engine can identify curves even when they cross nearly flat portions of the mesh.
After auto-detection, the mouse can be used to fine tune the result.

Once feature curves have been flagged, upgrading can commence. During the upgrade,
surface geometry is approximated by a continuous 2D polynomial, which is used to posi-
tion high-order nodes on the surface, giving the surface curvature. If the curvature is too
great, the cells abutting the boundary will intersect. To prevent intersections, meshCurve
can bend the edges of interior cells to coincide with the boundary. This bending action
is applied by default but may be turned off by a checkbox in the configuration panel for
surface reconstruction, as a way to speed calculation. Not all meshes need to have their
interior deformed in this way.

At the completion of the upgrade, the 3D view updates to show the new high-order
mesh. The user can then save the mesh as a new CGNS file.

5.4 Case Studies
Three case studies are presented to illustrate the capability of meshCurve. For each case
study, a mesh is upgraded from linear to 2nd order (i.e. low to high-order). A picture
of the mesh is presented, rendered with meshCurve. A table follows, summarizing key
information to demonstrate performance. The table lists:

1. the total number of cells

2. the total number of nodes

3. the fraction of patches given curvature

4. the time it took to process the mesh
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5. whether or not interior deformation was activated

6. minimum and maximum Jacobians of the original low-order mesh

7. minimum and maximum Jacobians of the new high-order mesh

Processing was done on a Macintosh computer with a 2.7 GHz Intel i5 processor (quad
core).

The Jacobians are a check for the presence of intersecting and/or inverted cells, both
of which could be problematic for simulations. Negative Jacobians indicate trouble. Only
one of the case studies encountered a negative Jacobian, and this occurrence was reme-
died by interior deformation. For the other case studies, interior deformation had little
affect. Since the timing calculations show that interior deformation can be the most time
consuming step, it is best to apply interior deformation only when it is truly needed.
meshCurve applies it by default, assuming the worst, but interior deformation can be
easily unselected. It should be noted that the interior deformation algorithm isn’t guar-
anteed to prevent negative Jacobians; it merely reduces their likelihood. For example,
negative Jacobians can occur if boundary cells are borderline degenerate. The most re-
cent version of meshCurve has the ability to calculate the Jacobians, alerting the user to
potential problems.
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Figure 48: Case study: meshCurve was used to process the above mesh, upgrading it from
linear to 2nd order. The mesh represents a sphere inside a square shaped domain. There
are two patches in the mesh, one representing the surface of the sphere (highlighted green)
and the second representing the outer surface of the domain (shown but not highlighted).
The green areas of the mesh were given curvature during the upgrade. Table 8 presents
statistics for the before and after mesh.

Table 8: Statistics for figure 48 mesh: meshCurve was used to upgrade the originally linear mesh to 2nd
order. The program was executed on a Macintosh computer with a 2.7 GHz Intel Core i5 processor running
Mac OS X.

# cells # nodes patches: interior time original Jacobian new Jacobian
recon./total defor. [ low — high ] [ low — high ]

480 588 1 / 2 no 0.08 sec [ 0.0131343 – 192.609 ] [ 0.0129203 – 192.613 ]
480 588 1 / 2 yes 0.11 sec [ 0.0131343 – 192.609 ] [ 0.0129203 – 192.613 ]
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5.5 Internal Architecture Overview

Figure 51: The internal data flow for the pro-
gram meshCurve. The database is the core
of the program, serving as storage facility and
communication hub. Four external classes in-
terface the database to accomplish the four
tasks 1) File input/output, 2) 3D visualization,
3) feature curve detection, and 4) surface recon-
struction.

The mesh database is the core of
meshCurve. It manages all informa-
tion associated with the mesh, serving
as both the information storage facility
and the conduit through which the var-
ious components of meshCurve commu-
nicate. There are four external classes
which interface the database to provide
additional functionality. These classes
perform the following tasks: 1) file in-
put/output, 2) feature curve detection,
3) surface reconstruction/interior defor-
mation, and 4) 3D visualization. The
code for the user interface wraps around
the database and accompanying classes.
It exposes the internal switches for the
user to manipulate. The modular struc-
ture of the code base and its object-
oriented design make the program easy
to edit. Figure 51 illustrates the flow of
data.

The mesh database is built for maximum flexibility. It is designed with no assumption
about the cell types or node orderings stored within. These definitions are placed else-
where, as a configuration table, which makes updating the definitions extremely easy. A
second example of flexibility is the storage scheme for element connectivities, which uses
both forward and backward references to not only answer questions such as “Which nodes
occupy this cell?” but also the inverse, “Which cells contain this node?” Furthermore, the
database provides a mechanism to cycle through elements as a list, as if the data were
stored as an array. The database also provides a mechanism to jump through elements
neighbor-to-neighbor, as if the mesh were stored as a connected graph.

5.5.1 Key Algorithms: feature curve detection

To find feature curves, meshCurve employs an algorithm proposed by Jiao and Bayyana,
which identifies the curves probabilistically, using a combination of several topological
metrics.[59] The algorithm proceeds through several steps. Surface nodes and edges are
flagged as candidate discontinuities if the local dihedral angle, ridge direction, and angle
defect fall within a predefined range. Then the candidate discontinuities are linked into
chains. The list of chains is filtered, and each chain receives a classification based on
the properties of its starting and ending nodes. As the algorithm progresses, the list is
narrowed until only the most likely candidates remain. In the end, the remaining chains
are classified as feature curves. Figure 52 illustrates the capabilities of the method,
implemented in meshCurve. Blue lines represent detected curves; orange dots represent
detected corners.

5.5.2 Key Algorithms: surface reconstruction

For high-order surface reconstruction, meshCurve employs a variation of Weighted Aver-
aging of Local Fittings (WALF), developed by Jiao and Wang.[60] WALF reconstructs a
mesh surface by averaging a set of locally fitted 2D Taylor polynomials. In the original
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Figure 49: Case study: meshCurve was used to process the above mesh, upgrading it
from linear to 2nd order. The mesh represents a static mixer. There are four patches in
the mesh, one of which is shown (highlighted green). The other three patches have been
hidden from view to make the visualization easier to interpret. Curvature imparted to
the high-order mesh is clearly discernible around the rim of the inlet spout. Table ??
presents statistics for the before and after mesh.

Table 9: Statistics for figure 49 mesh: meshCurve was used to upgrade the originally linear mesh
to 2nd order. The program was executed on a Macintosh computer with a 2.7 GHz Intel Core i5
processor running Mac OS X.

# cells # nodes patches: interior time original Jacobian new Jacobian

recon./total defor. [ low — high ] [ low — high ]

13,761 2,786 4 / 4 no 15.3 sec [ 0.00164224 – 0.0418735 ] [ 0.000572914 – 0.043354 ]

13,761 2,786 4 / 4 yes 16.1 sec [ 0.00164224 – 0.0418735 ] [ 0.000572914 – 0.0429421 ]

Table 10: Statistics for figure 50 mesh, representing an airfoil: meshCurve was used to upgrade the
originally linear mesh to 2nd order. The program was executed on a Macintosh computer with a
2.7 GHz Intel Core i5 processor running Mac OS X.

# cells # nodes patches: interior time original Jacobian new Jacobian

recon./total defor. [ low — high ] [ low — high ]

455,988 478,840 1 / 7 no 14.2 sec [ 3.00E-016 – 1.31E-008 ] [ -4.54E-018 – 1.31E-008 ]

455,988 478,840 1 / 7 yes 6.6 min [ 3.00E-016 – 1.31E-008 ] [ 3.00E-016 – 1.31E-008 ]
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Figure 50: Case study: meshCurve was used to process the above mesh, upgrading it
from linear to 2nd order. The mesh represents an airfoil. There are seven patches in the
mesh, one representing the surface of the airfoil (highlighted green) and six representing
the outer surfaces of the simulation domain. In the above view, the front patch has been
hidden to reveal the interior airfoil. Table ?? presents statistics for the before and after
mesh.
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(a) (b)

Figure 52: Screenshots of the program meshCurve, illustrating automatic feature curve
detection. Blue lines mark feature curves identified by the program. In the left subfigure,
the edges of a spring have been identified as feature curves. In the right subfigure, feature
detection has been limited to the portion of the mesh isolated for processing. The mesh
represents a fighter jet with a single wing selected. Curve detection has marked the wing’s
boundary as a feature curve. Interior curves and corners have also been identified.

algorithm, the polynomials are fit to every node on the surface. In our version, the poly-
nomials are fit to every face. The use of faces as the location-of-fit reduces the required
number of averages. Also the use of face-centered-fits facilitates the treatment of feature
curves as boundaries, thereby preventing the feature curves from being smoothed away.
An iterative solver, initialized to zero, helps reduce oscillations.

5.5.3 Key Algorithms: interior deformation

To deform the interior elements, meshCurve employs an interpolation scheme developed
by Luke, Collins, and Blades originally designed for the simulation of fluid structure
interaction.[76] According to this method, each interior node moves in accordance with a
weighted average of the boundary node motion. Every boundary node is weighted inverse
to its distance and in proportion to the area it commands.
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6 Conclusions
In the present project, a robust and efficient high-order CFD software suite for the com-
pressible Navier-Stokes equations that can provide engineering accuracy for real world
industry problems is developed. The following points summarize the key accomplish-
ments and significant conclusions that can be drawn from the current program:

To estimate the error of an engineering output, we extended the dual-weighted residual
method originally developed in the variational framework to the high-order CPR method
which is in the differential form. A dual-consistent CPR formulation of hyperbolic conser-
vation laws is developed and its dual consistency is analyzed. Super-convergent functional
and error estimate for the output with the CPR method are obtained. Factors affecting
the dual consistency, such as the solution point distribution, correction functions, bound-
ary conditions and the discretization approach for the non-linear flux divergence term,
are studied.

Next, we developed a parallel adjoint-based adaptive CPR solver with the capability of
handling any element-based error estimate and arbitrary discretization orders for mixed
grids. The current method have been applied to aerodynamic flows and challenging
engineering applications. Numerical tests show that significant savings in the number of
DOFs can be achieved through the adjoint-based adaptation.

Five SGS models are evaluated with the 1D Burgers’ equation discretized with the
CPR method. Different LES cell sizes were tested with a fixed filter width. In both
the a priori and a posteriori tests on a fine LES mesh, the SSM and the MM showed
excellent correlation with the true SGS, while the other models do not predict the SGS
stress satisfactorily. However, as the LES cell size increases, numerical truncation error
is dominant in the results. In this case, none of the models shows any benefits over ILES.
The analysis of scale similarity shows that perfect scale similarity exists for arbitrary
(periodic) data including turbulence under the assumption that the spectrum contains
relatively low frequency contents with respect to the filter width, regardless of amplitude
and phase angle of each mode. In an actual large eddy simulation, in which both large
and sub-grid scales exist, the present result on the ratio of the resolved scale stress and the
SGS stress may be the upper limit. Test results with data including higher modes near the
grid cutoff demonstrate that there is a high level of correlation between the modelled and
SGS stresses. Furthermore, γ = 1 demonstrates consistently higher correlation coefficients
than γ = 2. This may indicate that γ = 1 is preferred in a SSM implementation. The
stability of the SSM is also investigated. The study shows that it is the central flux rather
than the SSM that causes energy accumulating at high frequencies, which may lead to
the instability of a simulation. In this case, extra dissipation other than SSM, the DS, for
example, is necessary. However, the schemes with upwind flux smoothly damps out the
energy at high frequencies. Thus no extra dissipation is needed to stabilize the simulation
with the SSM.

Finally, we created a user-friendly GUI-based software tool, called meshCurve, to
convert linear unstructured meshes to curved high-order meshes. Based on a geometry
reconstruction procedure, the software infers boundary curvature from the mesh itself,
without need of a CAD geometry file. The software aims to be a cross-platform tool for
mesh upgrading, useful wherever high-order meshes are needed.

References
[1] Ainsworth, M., Oden, J., 1993. A unified approach to a posteriori error estimation

using element residual methods. Numerische Mathematik 65 (1), 23–50.

74DISTRIBUTION A: Distribution approved for public release



[2] Akhavan R, Ansari A, K. S., 2000. Subgrid-scale interactions in a numerically simu-
lated planar turbulent jet and implications for modeling. J. Fluid Mech. 408, 83–120.

[3] Akselvoll K, M. P., 1996. Large-eddy simulation of turbulent confined coannular
jets. J. Fluid Mech 315, 387–411.

[4] AW, C., 1997. Determination of the constant coefficient in scale similarity models
of turbulence. Phys. Fluids 9, 1485–1487.

[5] Baker, T. J., 1997. Mesh adaptation strategies for problems in fluid dynamics. Finite
Elements in Analysis and Design 25 (3-4), 243–273.

[6] Bardina J, Ferziger JH, R. W., 1980. Improved subgrid scale models for large eddy
simulation. Am. Inst. Aeronaut. Astronaut, 80–1357.

[7] Barth, T., 1998. Numerical methods for gasdynamic systems on unstructured
meshes. An Introduction to Recent Developments in Theory and Numerics for Con-
servation Laws 5, 195–285.

[8] Barth, T., Frederickson, P., 1990. Higher order solution of the Euler equations on
unstructured grids using quadratic reconstruction. AIAA paper 1990-0013.

[9] Bassi, F., Rebay, S., 1997. High-order accurate discontinuous finite element solution
of the 2D Euler equations. Journal of Computational Physics 138 (2), 251–285.

[10] Bassi, F., Rebay, S., 2000. Gmres discontinuous Galerkin solution of the compress-
ible Navier-Stokes equations. Lecture Notes in Computational Science and Engi-
neering 11, 197–208.

[11] Baumann, C., Oden, J., 1999. A discontinuous hp- finite element method for the
Euler and Navier-Stokes equations. International Journal for Numerical Methods in
Fluids 31 (1), 79–95.

[12] Becker, R., Rannacher, R., 1996. A feed-back approach to error control in finite
element methods: Basic analysis and examples. East-West J. Numer. Math 4, 237–
264.

[13] Becker, R., Rannacher, R., 2001. An optimal control approach to a posteriori error
estimation in finite element methods. Acta Numerica 10, 1–102.

[14] Berg, J., Nordström, J., 2014. Duality based boundary conditions and dual con-
sistent finite difference discretizations of the Navier-Stokes and Euler equations.
Journal of Computational Physics 259 (0), 135 – 153.

[15] Berger, M., Colella, P., 1989. Local adaptive mesh refinement for shock hydrody-
namics. Journal of computational Physics 82 (1), 64–84.

[16] Burgess, N., 2011. An adaptive discontinuous Galerkin solver for aerodynamic flows.
Ph.D. thesis, University of Wyoming.

[17] Cagnone, J., Nadarajah, S., 2012. A stable interface element scheme for the p-
adaptive lifting collocation penalty formulation. Journal of Computational Physics
231 (4), 1615 – 1634.

[18] Cagnone, J., Vermeire, B., Nadarajah, S., 2013. A p-adaptive LCP formulation for
the compressible Navier-Stokes equations. Journal of Computational Physics 233,
324 – 338.

75DISTRIBUTION A: Distribution approved for public release



[19] Castonguay, P., 2012. High-order energy stable flux reconstruction schemes for fluid
flow simulations on unstructured grids. Ph.D. thesis, STANFORD.

[20] Castro-Diaz, M. J., Hecht, F., Mohammadi, B., Pironneau, O., 1997. Anisotropic
unstructured mesh adaption for flow simulations. International Journal for Numer-
ical Methods in Fluids 25 (4), 475–491.

[21] Ceze, M., Fidkowski, K. J., 2012. Anisotropic hp-adaptation framework for func-
tional prediction. AIAA Journal 51 (2), 492–509.

[22] Clark RA, Ferziger JH, R. W., 1979. Evaluation of subgrid-scale models using an
accurately simulated turbulent flow. J.Fluid Mech 91, 1–16.

[23] Cockburn, B., Lin, S., Shu, C., 1989. TVB Runge-Kutta local projection discon-
tinuous Galerkin finite element method for conservation laws III: One-dimensional
systems. Journal of Computational Physics 84 (1), 90–113.

[24] Cockburn, B., Shu, C., 1998. The Runge-Kutta discontinuous Galerkin method for
conservation laws V: Multidimensional systems. Journal of Computational Physics
141 (2), 199–224.

[25] Devloo, P., Tinsley Oden, J., Pattani, P., 1988. An hp-adaptive finite element
method for the numerical simulation of compressible flow. Computer methods in
applied mechanics and engineering 70 (2), 203–235.

[26] DK, L., 1992. A propose modification of the germano subgrid-sclae closure method.
Phys. Fluids A 4, 633–635.

[27] Dompierre, J., Vallet, M.-G., Bourgault, Y., Fortin, M., Habashi, W. G., 2002.
Anisotropic mesh adaptation: towards user-independent, mesh-independent and
solver-independent CFD. part III. unstructured meshes. International Journal for
Numerical Methods in Fluids 39 (8), 675–702.

[28] Durbin P. A, P. R. B. A., 2011. Statistical Theory and Modeling for Turbulent
Flows. A John Wiley and Sons.

[29] Ekaterinaris, J., 2005. High-order accurate, low numerical diffusion methods for
aerodynamics. Progress in Aerospace Sciences 41 (3-4), 192–300.

[30] Fidkowski, K., 2011. Review of output-based error estimation and mesh adaptation
in computational fluid dynamics. AIAA Journal 49 (4), 673–694.

[31] Fidkowski, K., Darmofal, D., 2007. A triangular cut-cell adaptive method for high-
order discretizations of the compressible Navier-Stokes equations. Journal of Com-
putational Physics 225 (2), 1653–1672.

[32] Fidkowski, K., Roe, P., 2009. Entropy-based mesh refinement, I: The entropy adjoint
approach.

[33] Fidkowski, K., Roe, P., 2010. An entropy adjoint approach to mesh refinement.
SIAM Journal on Scientific Computing 32 (3), 1261–1287.

[34] Gao, H., Wang, Z. J., 2011. A residual-based procedure for hp-adaptation on 2D
hybrid meshes. AIAA Paper 2011-492.

[35] Gao, H., Wang, Z. J., Jan. 2013. A conservative correction procedure via recon-
struction formulation with the chain-rule divergence evaluation. Journal of Compu-
tational Physics 232, 7–13.

76DISTRIBUTION A: Distribution approved for public release



[36] Gao, H., Wang, Z. J., 2013. Differential formulation of discontinuous Galerkin
and related methods for the Navier-Stokes equations. Commun. Comput. Phys.
13, 1013–1044.

[37] Georgoulis, E. H., Hall, E., Houston, P., Sep. 2009. Discontinuous Galerkin methods
on hp-anisotropic meshes II: a posteriori error analysis and adaptivity. Appl. Numer.
Math. 59 (9), 2179–2194.

[38] Germano M, Piomelli U, M. P., WH, C., 1991. A dynamic subgrid-scale eddy vis-
cosity model A 3, 1760–1765.

[39] Ghosal S, L. T., 1995. A dynamic localization model for large eddy simulation of
turbulent flows. J. Fluid Mech 286, 229–255.

[40] Ghosal S, R. M., 1997. A numerical study of self-similarity in a turbulent plane
wake using large-eddy simulation. Phys. Fluids 9, 1729–1739.

[41] Giles, M., Pierce, N., 1997. Adjoint equations in CFD: duality, boundary conditions
and solution behaviour. AIAA paper 97-1850.

[42] Giles, M., Pierce, N., 2003. Adjoint error correction for integral outputs. In: Barth,
T., Deconinck, H. (Eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics. Vol. 25 of Lecture Notes in Computational Science
and Engineering. Springer Berlin Heidelberg, pp. 47–95.

[43] Gottlieb, S., Shu, C.-W., 2011. Strong stability-preserving high-order time dis-
cretization methods. Scociety for Industrial and Applied Mathematics 43, 89–112.

[44] Grinstein F. F., M. L. G., 2011. Implicit large eddy simulation:computing turbulent
fluid dynamics. Cambridge University Press.

[45] Harish Gopalan, S. H., 2013. A unified rans-les model:computational development,
accuracy and cost. J. Computational Physics 249, 249–274.

[46] Harris, R., Wang, Z. J., 2009. High-order adaptive quadrature-free spectral volume
method on unstructured grids. Computers & Fluids 38 (10), 2006–2025.

[47] Hartmann, R., 2007. Adjoint consistency analysis of discontinuous Galerkin dis-
cretizations. SIAM J. Numer. Anal. 45 (6), 2671–2696.

[48] Hartmann, R., Houston, P., 2002. Adaptive discontinuous Galerkin finite element
methods for the compressible Euler equations. Journal of Computational Physics
183 (2), 508 – 532.

[49] Hesthaven, J., Warburton, T., 2008. Nodal Discontinuous Galerkin Methods: Al-
gorithms, Analysis and Applications. Vol. 54. Springer-Verlag New York Inc.

[50] Hicken, J., 2012. Output error estimation for summation-by-parts finite-difference
schemes. Journal of Computational Physics 231 (9), 3828 – 3848.

[51] Hicken, J., Zingg, D., 2013. Summation-by-parts operators and high-order quadra-
ture. Journal of Computational and Applied Mathematics 237 (1), 111 – 125.

[52] Houston, P., Süli, E., 2001. Hp-adaptive discontinuous Galerkin finite element meth-
ods for first-order hyperbolic problems. SIAM Journal on Scientific Computing
23 (4), 1226–1252.

77DISTRIBUTION A: Distribution approved for public release



[53] Huang, W., Russell, R. D., 2010. Adaptive Moving Mesh Methods. Vol. 174.
Springer.

[54] Huynh, H. T., 2007. A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods. AIAA Paper 2007-4079.

[55] Huynh, H. T., 2011. High-order methods by correction procedures using reconstruc-
tions. Adaptive High-Order Methods in Computational Fluid Dynamics 2, 391–422.

[56] Huynh, H. T., Z. J. W., Vincent, P. E., 2014. High-order methods for computational
fluid dynamics: A brief review of compact differential formulations on unstructured
grids. Computers & Fluids 98 (0), 209–220.

[57] J., S., 1963. General circulation experiments with the primitive equations. The basic
experiment, Weather Rev, 91–99.

[58] Jameson, A., Vincent, P. E., Castonguay, P., Feb. 2012. On the non-linear stability
of flux reconstruction schemes. J. Sci. Comput. 50 (2), 434–445.

[59] Jiao, X., Bayyana, N. R., 2008. Identification of c1 and c2 discontinuities for surface
meshes in cad. Computer-Aided Design 40 (2), 160–175.

[60] Jiao, X., Wang, D., 2012. Reconstructing high-order surfaces for meshing. Engi-
neering with Computers 28 (4), 361–373.

[61] Johnson, C., 1998. Adaptive finite element methods for conservation laws. Advanced
numerical approximation of nonlinear hyperbolic equations, 269–323.

[62] K. Duraisamy, J. J. Alonso, F. P., Chandrashekar, P., 2010. Error estimation for
high speed flows using continuous and discrete adjoints. AIAA Paper 2010–128.

[63] Karniadakis, G., Sherwin, S., 1999. Spectral/hp Element Methods for CFD. Oxford
University Press, USA.

[64] Kopriva, D., Kolias, J., 1996. A conservative staggered-grid chebyshev multidomain
method for compressible flows. Journal of computational physics 125 (1), 244–261.

[65] Leicht, T., Hartmann, R., Sep. 2010. Error estimation and anisotropic mesh re-
finement for 3D laminar aerodynamic flow simulations. Journal of Computational
Physics 229 (19), 7344–7360.

[66] Lesieur M, M. O., 1984. New trends in large-eddy simulations of turbulence. Annu.
Rev. Fluid Mech 16, 99–137.

[67] Li, Y., Allaneau, Y., Jameson, A., 2010. Continuous adjoint approach for adaptive
mesh refinement. AIAA Paper 2010-3982.

[68] Li, Y., Premasuthan, S., Jameson, A., 2010. Comparison of h- and p-adaptations
for spectral difference methods. AIAA Paper 2010-4435.

[69] Li, Y., Wang, Z. J., 2013. Evaluation of optimized CPR schemes for computational
aeroacoustics benchmark problems. AIAA Paper 2013-2689.

[70] Liang, C., Jameson, A., Wang, Z. J., May 2009. Spectral difference method for com-
pressible flow on unstructured grids with mixed elements. Journal of Computational
Physics 228 (8), 2847–2858.

78DISTRIBUTION A: Distribution approved for public release



[71] Liu, Y., Vinokur, M., Wang, Z. J., 2006. Discontinuous spectral difference method
for conservation laws on unstructured grids. Computational Fluid Dynamics 2004,
449–454.

[72] Liu, Y., Vinokur, M., Wang, Z. J., 2006. Spectral finite volume method for con-
servation laws on unstructured grids V: Extension to three-dimensional systems.
Journal of Computational Physics 212 (2), 454–472.

[73] Liu S, M. C., 1994. On the properties of similarity subgrid-scale models as deduced
from measurements in a turbulent jet. J. Fluid Mech 275, 83–119.

[74] Lohner, R., Morgan, K., Peraire, J., Vahdati, M., 1987. Finite element flux-corrected
transport for the Euler and Navier-Stokes equations. International Journal for Nu-
merical Methods in Fluids 7 (10), 1093–1109.

[75] Lu, J. C.-C., 2005. An a posteriori error control framework for adaptive precision
optimization using discontinuous Galerkin finite element method. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

[76] Luke, E., Collins, E., Blades, E., 2012. A fast mesh deformation method using
explicit interpolation. Journal of Computational Physics 231 (2), 586–601.

[77] Luo, X., Shephard, M. S., Remacle, J.-F., 2001. The influence of geometric ap-
proximation on the accuracy of high order methods. Rensselaer SCOREC report
1.

[78] May, G., Jameson, A., 2006. A spectral difference method for the Euler and Navier-
Stokes equations on unstructured meshes. AIAA paper 2006-304.

[79] McMillan OJ, Ferzinger JH, R. R., 1982. Tests of new subgrid scale models in
strained turbulence. Am. Inst. Aeronaut. Astronaut. 80, 13–39.

[80] Meneveau C, K. J., 2000. Scale-invariance and turbulence models for large-eddy
simulation. Annu. Rev. Fluid Mech., 1–32.

[81] Moin P, K. J., 1982. Numerical investigation of turbulent channel flow. J. Fluid
Mech 118, 341–77.

[82] Park, M., 2002. Adjoint-based three-dimensional error prediction and grid adapta-
tion. AIAA paper 2002-3286.

[83] Peraire, J., Persson, P., 2007. The compact discontinuous Galerkin CDG method
for elliptic problems. Arxiv preprint math/0702353.

[84] Piomelli U, L. J., 1995. Large-eddy simulation of rotating channel flows using a
localized dynamic model. Phys.Fluids 7, 839–848.

[85] Reed, W. H., Hill, T. R., 1973. Triangular Mesh Methods for the Neutron Transport
Equation.

[86] Rogallo RS, M. P., 1984. Numerical simulation of turbulent flows. Annu. Rev. Fluid
Mech 16, 99–137.

[87] Sanderson, C., 2010. Armadillo: An open source c++ linear algebra library for fast
prototyping and computationally intensive experiments.

[88] SB, P., 2013. Turbulent Flows. Cambridge Univ. Press, Cambridge UK.

79DISTRIBUTION A: Distribution approved for public release



[89] Schroeder, W., Martin, K., Lorensen, B., 2006. The Visualization Toolkit, 4th Edi-
tion. Kitware, Inc., United States of America.

[90] Schütz, J., May, G., 2013. An adjoint consistency analysis for a class of hybrid
mixed methods. IMA Journal of Numerical Analysis 34, 1222–1239.

[91] Shi, L., Wang, Z. J., 2013. Adjoint based anisotropic mesh adaptation for the cpr
method. AIAA Paper 2013-2869.

[92] Shi, L., Wang, Z. J., 2015. Adjoint-based Error Estimation and Mesh Adaptation
for the Correction Procedure via Reconstruction Method. Journal of Computational
Physics 295, 261–284.

[93] Shih, T., Qin, Y., 2007. A posteriori method for estimating and correcting grid-
induced errors in CFD solutions-part 1: Theory and method. AIAA Paper 2007-
100.

[94] T. Haga, H. G., Wang, Z. J., 2011. A high-order unifying discontinuous formulation
for the Navier-Stokes equations on 3D mixed grids. Math. Model. Nat. Phenom.
6 (03), 28–56.

[95] Taneda, S., Oct. 1956. Experimental Investigation of the Wake behind a Sphere at
Low Reynolds Numbers. Journal of the Physical Society of Japan 11, 1104.

[96] V. Heuveline, R. R., 2003. Duality-based adaptivity in the hp-finite element method.
Journal of Numerical Mathematics (2), 95–113.

[97] Van den Abeele, K., Lacor, C., Wang, Z. J., 2008. On the stability and accuracy of
the spectral difference method. Journal of Scientific Computing 37 (2), 162–188.

[98] Venditti, D., Darmofal, D., 2003. Anisotropic grid adaptation for functional outputs:
application to two-dimensional viscous flows. Journal of Computational Physics
187 (1), 22–46.

[99] Venditti, D. A., Darmofal, D. L., Oct. 2000. Adjoint error estimation and grid adap-
tation for functional outputs: application to quasi-one-dimensional flow. Journal of
Computational Physics 164 (1), 204–227.

[100] Venditti, D. A., Darmofal, D. L., May 2003. Anisotropic grid adaptation for func-
tional outputs: application to two-dimensional viscous flows. Journal of Computa-
tional Physics 187 (1), 22–46.

[101] Wang, L., Mavriplis, D., 2009. Adjoint-based hp-adaptive discontinuous Galerkin
methods for the 2D compressible Euler equations. Journal of Computational Physics
228 (20), 7643–7661.

[102] Wang, L., Mavriplis, D. J., Nov. 2009. Adjoint-based hp-adaptive discontinuous
Galerkin methods for the 2D compressible Euler equations. Journal of Computa-
tional Physics 228 (20), 7643–7661.

[103] Wang, Z., 2007. High-order methods for the euler and navier–stokes equations on
unstructured grids. Progress in Aerospace Sciences 43 (1), 1–41.

[104] Wang, Z. J., 2002. Spectral (finite) volume method for conservation laws on unstruc-
tured grids: basic formulation. Journal of Computational Physics 178 (1), 210–251.

[105] Wang, Z. J., 2007. High-order methods for the Euler and Navier-Stokes equations
on unstructured grids. Progress in Aerospace Sciences 43 (1-3), 1–41.

80DISTRIBUTION A: Distribution approved for public release



[106] Wang, Z. J., May 2011. Adaptive High-Order Methods in Computational Fluid
Dynamics. World Scientific Publishing.

[107] Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck,
H., Hartmann, R., Hillewaert, K., Huynh, H. T., Kroll, N., May, G., Persson, P.-O.,
van Leer, B., Visbal, M., Jul. 2013. High-order CFD Methods: Current Status and
Perspective. International Journal for Numerical Methods in Fluids 72, 811–845.

[108] Wang, Z. J., Gao, H., 2009. A unifying lifting collocation penalty formulation includ-
ing the discontinuous Galerkin, spectral volume/difference methods for conservation
laws on mixed grids. Journal of Computational Physics 228, 8161–8186.

[109] Wang, Z. J., Gao, H., Haga, T., 2011. A unifying discontinuous formulation for
hybrid meshes. Adaptive High-Order Methods in Computational Fluid Dynamics,
423–453.

[110] Wang, Z. J., Liu, Y., 2002. Spectral (finite) volume method for conservation laws
on unstructured grids II. extension to two-dimensional scalar equation. Journal of
Computational Physics 179 (2), 665–697.

[111] Warburton, T., 2006. An explicit construction of interpolation nodes on the simplex.
Journal of engineering mathematics 56 (3), 247–262.

[112] Warren, G., Anderson, W., Thomas, J., Krist, S., 1991. Grid convergence for adap-
tive methods. In: 10th AIAA Computational Fluid Dynamics Conference.

[113] Wu X, S. K., 1997. Large eddy simulation of an equilibrium three dimensional
turbulent boundary layer. Am. Inst. Aeronaut. Astronaut. J. 35, 67–74.

[114] Wu X, S. K., 1998. Numerical investigation of the turbulent boundary layer over a
bump. J. Fluid Mech. 362, 229–271.

[115] Xie, Z. Q., Sevilla, R., Hassan, O., Morgan, K., 2013. The generation of arbitrary
order curved meshes for 3d finite element analysis. Computational Mechanics 51 (3),
361–374.

[116] Yang, X., Huang, W., Qiu, J., 2012. A moving mesh weno method for one-
dimensional conservation laws. SIAM Journal on Scientific Computing 34 (4),
A2317–A2343.

[117] Yano, M., Darmofal, D. L., Sep. 2012. An optimization-based framework for
anisotropic simplex mesh adaptation. Journal of Computational Physics 231 (22),
7626–7649.

[118] Yu, M., Wang, Z. J., Liu, Y., 2014. On the accuracy and efficiency of discontinuous
Galerkin, spectral difference and correction procedure via reconstruction methods.
Journal of Computational Physics 259, 70–95.

[119] Zhang, X., Vallet, M.-G., Dompierre, J., Labbe, P., Pelletier, D., Trepanier, J.-
Y., 2001. Mesh adaptation using different error indicators for the Euler equations.
AIAA Paper 2001-2549.

[120] Z.J. Wang, Y. L., 2015. An analysis of scale similarity and its implications for large
eddy simulation. Commun. Comput. Phys.Submitted.

81DISTRIBUTION A: Distribution approved for public release



Response ID:5503 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

zjw@ku.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

7858642440

Organization / Institution name

University of Kansas

Grant/Contract Title
The full title of the funded effort.

The Development of High-Order Methods for Real World Applications

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0286

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

ZJ Wang

Program Manager
The AFOSR Program Manager currently assigned to the award

Jean-Luc Cambier

Reporting Period Start Date

09/01/2012

Reporting Period End Date

08/31/2015

Abstract

With increased computational power and progress in numerical methods over the past several decades,
Computational Fluid Dynamics (CFD) is now used routinely as a powerful tool in the design of aircraft.
Current production CFD codes used in the aerospace industry are usually second order accurate. High-
order methods have the potential to achieve higher accuracy at less cost than low-order methods. This
potential has been demonstrated conclusively for smooth problems in the latest International Workshops
on High-Order Methods. For non-smooth problems, solution based hp-adaptation offers the best promise.
The primary objective of the present study is to develop robust and efficient high-order CFD methods and
tools for the compressible Navier-Stokes equations that can provide engineering accuracy for real world
industry problems. Several pacing items are addressed, which include hp-adaptations, sub-grid stress
models for large eddy simulations, and high-order mesh generation.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation.  E.g., contains proprietary information.

DISTRIBUTION A: Distribution approved for public release



SF298 Form
Please attach your SF298 form.  A blank SF298 can be found here.  Please do not password protect or secure the PDF 

The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

airforce_report_r2.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

1. B.J. Zimmerman and Z.J. Wang, “The efficient implementation of correction procedure via reconstruction
with graphics processing unit computing,” Computers & Fluids, 101 (2014) 263–272.
2. Z.J. Wang, “High-order CFD Tools for Aircraft Design”, Philosophical Transactions A of the Royal Society,
372, 20130318, July 2014.
3. H.T. Huynh, Z.J. Wang and P.E. Vincent, “High-Order Methods for Computational Fluid Dynamics: A Brief
Review of Compact Differential Formulations on Unstructured Grids, Computers and Fluids Volume 98, 2
July 2014, Pages 209–220.
4. M.L. Yu, Z. J. Wang and Y. Liu, “On the accuracy and efficiency of discontinuous Galerkin, spectral
difference and correction procedure via reconstruction methods,” Journal of Computational Physics
Volume 259, 15 February 2014, Pages 70–95.
5. M.L. Yu, Z. J. Wang, H. Hu, Formation of Bifurcated Wakes Behind Finite Span Flapping Wings,
AIAA Journal 51 (No. 8), 2040-2044, 2013.
6. Z.J. Wang, K.J. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K.
Hillewaert, H.T. Huynh, N. Kroll, G. May, P-O. Persson, B. van Leer, and M. Visbal. “High-Order CFD
Methods: Current Status and Perspective,” International Journal for Numerical Methods in Fluids, 72, 811-
845, (2013).
7. H. Gao and Z.J. Wang, “A Conservative Correction Procedure via Reconstruction Formulation with the
Chain-Rule Divergence Evaluation”, J. Computational Physics 232, 7–13 (2013).
8. Y. Li and Z.J. Wang, “An Optimized Correction Procedure via Reconstruction Formulation for Broadband
Wave Computation”, Communications in Computational Physics, Vol. 13, No. 5, pp. 1265-1291 (2013).
9. H. Gao, Z.J. Wang and H.T. Huynh, “Differential Formulation of Discontinuous Galerkin and Related
Methods for the Navier-Stokes Equations”, Communications in Computational Physics 13, No. 4, 1013-
1044 (2013).
10. M.L. Yu, Z.J. Wang, “On the Connection Between the Correction and Weighting Functions in the
Correction Procedure via Reconstruction Method,” J Sci Comput 54, 227–244 (2013). 

Changes in research objectives (if any):

None

Change in AFOSR Program Manager, if any:

From Dr. Fariba Fahroo to Dr. Jean-Luc Cambier

Extensions granted or milestones slipped, if any:

None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

DISTRIBUTION A: Distribution approved for public release

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/184-af07e07c4027e8b5285d935bcd0a1913_AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/183-750d48806cff17693eeada893d1de870_airforce_report_r2.pdf


Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary    

Equipment/Facilities    

Supplies    

Total    

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Nov 24, 2015 19:44:27 Success: Email Sent to: zjw@ku.edu

DISTRIBUTION A: Distribution approved for public release


	DTIC_Title_Page_-_The_Development_of_High-Order_Methods_for_Real_World_Applications
	FA9550-12-1-0286 SF298
	FA9550-12-1-0286 FINAL REPORT
	FA9550-12-1-0286 SURV



